又AB⊥DA.且AD∩AC=A,
∴AB⊥面ADC,∴AB⊂面ABC,
∴平面ACD⊥平面ABC;
(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,
∴BP=DQ=DA=2,
由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,
∴三棱锥Q﹣ABP的体积V=
=××==1.
【点评】本题考查面面垂直,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.
19.(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)[0.6,0.7)
频数13249265
使用了节水龙头50天的日用水量频数分布表
日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)
频数151310165
(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图;
(2)估计该家庭使用节水龙头后,日用水量小于0.35m3的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)
【考点】B7:分布和频率分布表;B8:频率分布直方图
【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.
【分析】(1)根据使用了节水龙头50天的日用水量频数分布表能作出使用了节水龙头50天的日用水量数据的频率分布直方图.
(2)根据频率分布直方图能求出该家庭使用节水龙头后,日用水量小于0.35m3的概率.
(3)由题意得未使用水龙头50天的日均水量为0.48,使用节水龙头50天的日均用水量为0.35,能此能估计该家庭使用节水龙头后,一年能节省多少水.
【解答】解:(1)根据使用了节水龙头50天的日用水量频数分布表,
作出使用了节水龙头50天的日用水量数据的频率分布直方图,如下图:
(2)根据频率分布直方图得:
该家庭使用节水龙头后,日用水量小于0.35m3的概率为:
p=(0.2+1.0+2.6+1)×0.1=0.48.
(3)由题意得未使用水龙头50天的日均水量为:
(1×0.05+3×0.15+2×0.25+4×0.35+9×0.45+26×0.55+5×0.65)=0.48,
使用节水龙头50天的日均用水量为:
(1×0.05+5×0.15+13×0.25+10×0.35+16×0.45+5×0.55)=0.35,
∴估计该家庭使用节水龙头后,一年能节省:365×(0.48﹣0.35)=47.45m3.
【点评】本题考查频率分由直方图的作法,考查概率的求法,考查平均数的求法及应用等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.
20.(12分)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N两点.
(1)当l与x轴垂直时,求直线BM的方程;
(2)证明:∠ABM=∠ABN.