订单查询
首页 其他文档
全国统一高考数学试卷(理科)(新课标Ⅱ)
大小:0B 10页 发布时间: 2024-01-29 11:02:15 6.95k 5.8k

【分析】由题意画出图形,先求出PQ,再由|PQ|=|OF|列式求C的离心率.

【解答】解:如图,

由题意,把x=代入x2+y2=a2,得PQ=

再由|PQ|=|OF|,得,即2a2=c2,

,解得e=

故选:A.

【点评】本题考查双曲线的简单性质,考查数形结合的解题思想方法,是中档题.

12.(5分)设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x﹣1).若对任意x∈(﹣∞,m],都有f(x)≥﹣,则m的取值范围是()

A.(﹣∞,] B.(﹣∞,] C.(﹣∞,] D.(﹣∞,]

【分析】因为f(x+1)=2f(x),∴f(x)=2f(x﹣1),分段求解析式,结合图象可得.

【解答】解:因为f(x+1)=2f(x),∴f(x)=2f(x﹣1),

∵x∈(0,1]时,f(x)=x(x﹣1)∈[﹣,0],

∴x∈(1,2]时,x﹣1∈(0,1],f(x)=2f(x﹣1)=2(x﹣1)(x﹣2)∈[﹣,0];

∴x∈(2,3]时,x﹣1∈(1,2],f(x)=2f(x﹣1)=4(x﹣2)(x﹣3)∈[﹣1,0],

当x∈(2,3]时,由4(x﹣2)(x﹣3)=﹣解得x=或x=

若对任意x∈(﹣∞,m],都有f(x)≥﹣,则m≤

故选:B.

【点评】本题考查了函数与方程的综合运用,属中档题.

二、填空题:本题共4小题,每小题5分,共20分。

13.(5分)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为0.98.

【分析】利用加权平均数公式直接求解.

【解答】解:∵经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,

有20个车次的正点率为0.98,有10个车次的正点率为0.99,

∴经停该站高铁列车所有车次的平均正点率的估计值为:

(10×0.97+20×0.98+10×0.99)=0.98.

故答案为:0.98.

【点评】本题考查经停该站高铁列车所有车次的平均正点率的估计值的求法,考查加权平均数公式等基础知识,考查推理能力与计算能力,属于基础题.

14.(5分)已知f(x)是奇函数,且当x<0时,f(x)=﹣eax.若f(ln2)=8,则a=﹣3.

【分析】奇函数的定义结合对数的运算可得结果

【解答】解:∵f(x)是奇函数,∴f(﹣ln2)=﹣8,

又∵当x<0时,f(x)=﹣eax,

∴f(﹣ln2)=﹣e﹣aln2=﹣8,

∴﹣aln2=ln8,∴a=﹣3.

故答案为:﹣3

【点评】本题主要考查函数奇偶性的应用,对数的运算性质,属于基础题.

15.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B=,则△ABC的面积为

【分析】利用余弦定理得到c2,然后根据面积公式S△ABC=acsinB=c2sinB求出结果即可.

【解答】解:由余弦定理有b2=a2+c2﹣2accosB,

∵b=6,a=2c,B=

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441