23.已知a,b,c为正数,且满足abc=1.证明:
(1)++≤a2+b2+c2;
(2)(a+b)3+(b+c)3+(c+a)3≥24.
【分析】(1)利用基本不等式和1的运用可证,(2)分析法和综合法的证明方法可证.
【解答】证明:(1)分析法:已知a,b,c为正数,且满足abc=1.
要证(1)++≤a2+b2+c2;因为abc=1.
就要证:++≤a2+b2+c2;
即证:bc+ac+ab≤a2+b2+c2;
即:2bc+2ac+2ab≤2a2+2b2+2c2;
2a2+2b2+2c2﹣2bc﹣2ac﹣2ab≥0
(a﹣b)2+(a﹣c)2+(b﹣c)2≥0;
∵a,b,c为正数,且满足abc=1.
∴(a﹣b)2≥0;(a﹣c)2≥0;(b﹣c)2≥0恒成立;当且仅当:a=b=c=1时取等号.
即(a﹣b)2+(a﹣c)2+(b﹣c)2≥0得证.
故++≤a2+b2+c2得证.
(2)证(a+b)3+(b+c)3+(c+a)3≥24成立;
即:已知a,b,c为正数,且满足abc=1.
(a+b)为正数;(b+c)为正数;(c+a)为正数;
(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a);
当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;
∵a,b,c为正数,且满足abc=1.
(a+b)≥2;(b+c)≥2;(c+a)≥2;
当且仅当a=b,b=c;c=a时取等号;即:a=b=c=1时取等号;
∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a)≥3×8••=24abc=24;
当且仅当a=b=c=1时取等号;
故(a+b)3+(b+c)3+(c+a)3≥24.得证.
故得证.
【点评】本题考查重要不等式和基本不等式的运用,分析法和综合法的证明方法.