订单查询
首页 其他文档
高考全国卷理科数学试卷及答案
大小:0B 11页 发布时间: 2024-01-29 11:06:10 14.03k 13.19k

∴|AB|=

【点评】本题考查了抛物线的性质,属中档题.

20.(12分)已知函数f(x)=sinx﹣ln(1+x),f′(x)为f(x)的导数.证明:

(1)f′(x)在区间(﹣1,)存在唯一极大值点;

(2)f(x)有且仅有2个零点.

【分析】(1)f(x)的定义域为(﹣1,+∞),求出原函数的导函数,进一步求导,得到f″(x)在(﹣1,)上为减函数,结合f″(0)=1,f″()=﹣1+<﹣1+1=0,由零点存在定理可知,函数f″(x)在(﹣1,)上存在唯一得零点x0,结合单调性可得,f′(x)在(﹣1,x0)上单调递增,在(x0,)上单调递减,可得f′(x)在区间(﹣1,)存在唯一极大值点;

(2)由(1)知,当x∈(﹣1,0)时,f′(x)<0,f(x)单调递减;当x∈(0,x0)时,f′(x)>0,f(x)单调递增;由于f′(x)在(x0,)上单调递减,且f′(x0)>0,f′()<0,可得函数f′(x)在(x0,)上存在唯一零点x1,结合单调性可知,当x∈(x0,x1)时,f(x)单调递增;当x∈()时,f(x)单调递减.当x∈(,π)时,f(x)单调递减,再由f()>0,f(π)<0.然后列x,f′(x)与f(x)的变化情况表得答案.

【解答】证明:(1)f(x)的定义域为(﹣1,+∞),

f′(x)=cosx,f″(x)=﹣sinx+

令g(x)=﹣sinx+,则g′(x)=﹣cosx<0在(﹣1,)恒成立,

∴f″(x)在(﹣1,)上为减函数,

又∵f″(0)=1,f″()=﹣1+<﹣1+1=0,由零点存在定理可知,

函数f″(x)在(﹣1,)上存在唯一的零点x0,结合单调性可得,f′(x)在(﹣1,x0)上单调递增,

在(x0,)上单调递减,可得f′(x)在区间(﹣1,)存在唯一极大值点;

(2)由(1)知,当x∈(﹣1,0)时,f′(x)单调递增,f′(x)<f′(0)=0,f(x)单调递减;

当x∈(0,x0)时,f′(x)单调递增,f′(x)>f′(0)=0,f(x)单调递增;

由于f′(x)在(x0,)上单调递减,且f′(x0)>0,f′()=<0,

由零点存在定理可知,函数f′(x)在(x0,)上存在唯一零点x1,结合单调性可知,

当x∈(x0,x1)时,f′(x)单调递减,f′(x)>f′(x1)=0,f(x)单调递增;

当x∈()时,f′(x)单调递减,f′(x)<f′(x1)=0,f(x)单调递减.

当x∈(,π)时,cosx<0,﹣<0,于是f′(x)=cosx﹣<0,f(x)单调递减,

其中f()=1﹣ln(1+)>1﹣ln(1+)=1﹣ln2.6>1﹣lne=0,

f(π)=﹣ln(1+π)<﹣ln3<0.

于是可得下表:

x (﹣1,0)0 (0,x1)x1()π

f´(x)﹣ 0+0﹣﹣﹣﹣

f(x)单调递减 0单调递增 大于0单调递减 大于0单调递减 小于0

结合单调性可知,函数f(x)在(﹣1,]上有且只有一个零点0,

由函数零点存在性定理可知,f(x)在(,π)上有且只有一个零点x2,

当x∈[π,+∞)时,f(x)=sinx﹣ln(1+x)<1﹣ln(1+π)<1﹣ln3<0,因此函数f(x)在[π,+∞)上无零点.

综上,f(x)有且仅有2个零点.

【点评】本题考查利用导数求函数的极值,考查函数零点的判定,考查数学转化思想方法,考查函数与方程思想,考查逻辑思维能力与推理运算能力,难度较大.

21.(12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得﹣1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得﹣1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.

(1)求X的分布列;

(2)若甲药、乙药在试验开始时都赋予4分,pi(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,pi=api﹣1+bpi+cpi+1(i=1,2,…,7),其中a=P(X=﹣1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.

(i)证明:{pi+1﹣pi}(i=0,1,2,…,7)为等比数列;

(ii)求p4,并根据p4的值解释这种试验方案的合理性.

【分析】(1)由题意可得X的所有可能取值为﹣1,0,1,再由相互独立试验的概率求P(X=﹣1),P(X=0),P(X=1)的值,则X的分布列可求;

(2)(i)由α=0.5,β=0.8结合(1)求得a,b,c的值,代入pi=api﹣1+bpi+cpi+1,得到(pi+1﹣pi)=4(pi﹣pi﹣1),由p1﹣p0=p1≠0,可得{pi+1﹣pi}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列;

(ii)由(i)可得,p8=(p8﹣p7)+(p7﹣p6)+…+(p1﹣p0)+p0,利用等比数列的前n项和与p8=1,得p1=,进一步求得p4=.P4表示最终认为甲药更有效的概率,结合α=0.5,β=0.8,可得在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为,此时得出错误结论的概率非常小,说明这种试验方案合理.

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441