订单查询
首页 其他文档
全国统一高考数学试卷(文科)(新课标Ⅰ)
大小:0B 11页 发布时间: 2024-01-29 11:07:58 17.22k 16.43k

圆心M(a,a)到直线x+y=0的距离d=

又|AB|=4,∴在Rt△OMB中,

d2+(|AB|)2=R2,

又∵⊙M与x=﹣2相切,∴|a+2|=R②

由①②解得

∴⊙M的半径为2或6;

(2)∵线段AB为⊙M的一条弦O是弦AB的中点,∴圆心M在线段AB的中垂线上,

设点M的坐标为(x,y),则|OM|2+|OA|2=|MA|2,

∵⊙M与直线x+2=0相切,∴|MA|=|x+2|,

∴|x+2|2=|OM|2+|OA|2=x2+y2+4,

∴y2=4x,

∴M的轨迹是以F(1,0)为焦点x=﹣1为准线的抛物线,

∴|MA|﹣|MP|=|x+2|﹣|MP|

=|x+1|﹣|MP|+1=|MF|﹣|MP|+1,

∴当|MA|﹣|MP|为定值时,则点P与点F重合,即P的坐标为(1,0),

∴存在定点P(1,0)使得当A运动时,|MA|﹣|MP|为定值.

【点评】本题考查了直线与圆的关系和抛物线的定义,考查了待定系数法和曲线轨迹方程的求法,属难题.

(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。

[选修4-4:坐标系与参数方程](10分)

22.(10分)在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθ+ρsinθ+11=0.

(1)求C和l的直角坐标方程;

(2)求C上的点到l距离的最小值.

【分析】(1)把曲线C的参数方程变形,平方相加可得普通方程,把x=ρcosθ,y=ρsinθ代入2ρcosθ+ρsinθ+11=0,可得直线l的直角坐标方程;

(2)法一、设出椭圆上动点的坐标(参数形式),再由点到直线的距离公式写出距离,利用三角函数求最值;

法二、写出与直线l平行的直线方程为,与曲线C联立,化为关于x的一元二次方程,利用判别式大于0求得m,转化为两平行线间的距离求C上的点到l距离的最小值.

【解答】解:(1)由(t为参数),得

两式平方相加,得(x≠﹣1),

∴C的直角坐标方程为(x≠﹣1),

由2ρcosθ+ρsinθ+11=0,得

即直线l的直角坐标方程为得

(2)法一、设C上的点P(cosθ,2sinθ)(θ≠π),

则P到直线得的距离为:

d=

∴当sin(θ+φ)=﹣1时,d有最小值为

法二、设与直线平行的直线方程为

联立,得16x2+4mx+m2﹣12=0.

由△=16m2﹣64(m2﹣12)=0,得m=±4.

∴当m=4时,直线与曲线C的切点到直线的距离最小,为

【点评】本题考查间单曲线的极坐标方程,考查参数方程化普通方程,考查直线与椭圆位置关系的应用,训练了两平行线间的距离公式的应用,是中档题.

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441