【解答】解:∵U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},
∴∁UA={1,6,7},
则B∩∁UA={6,7}
故选:C.
【点评】本题主要考查集合的交集与补集的求解,属于基础试题.
3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()
A.a<b<c B.a<c<b C.c<a<b D.b<c<a
【分析】由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.
【解答】解:a=log20.2<log21=0,
b=20.2>20=1,
∵0<0.20.3<0.20=1,
∴c=0.20.3∈(0,1),
∴a<c<b,
故选:B.
【点评】本题考查了指数函数和对数函数的单调性,增函数和减函数的定义,属基础题.
4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()
A.165cm B.175cm C.185cm D.190cm
【分析】充分运用黄金分割比例,结合图形,计算可估计身高.
【解答】解:头顶至脖子下端的长度为26cm,
说明头顶到咽喉的长度小于26cm,
由头顶至咽喉的长度与咽喉至肚脐的长度之比是≈0.618,
可得咽喉至肚脐的长度小于≈42cm,
由头顶至肚脐的长度与肚脐至足底的长度之比是,
可得肚脐至足底的长度小于=110,
即有该人的身高小于110+68=178cm,
又肚脐至足底的长度大于105cm,
可得头顶至肚脐的长度大于105×0.618≈65cm,
即该人的身高大于65+105=170cm,
故选:B.
【点评】本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.
5.(5分)函数f(x)=在[﹣π,π]的图象大致为()
A. B.
C. D.
【分析】由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C.
【解答】解:∵f(x)=,x∈[﹣π,π],
∴f(﹣x)==﹣=﹣f(x),
∴f(x)为[﹣π,π]上的奇函数,因此排除A;
又f()=,因此排除B,C;
故选:D.