订单查询
首页 其他文档
全国统一高考数学试卷(文科)(新课标Ⅰ)
大小:0B 11页 发布时间: 2024-01-29 11:07:58 17.22k 16.43k

【分析】法一:

(1)连结B1C,ME,推导出四边形MNDE是平行四边形,从而MN∥ED,由此能证明MN∥平面C1DE.

(2)过C作C1E的垂线,垂足为H,推导出DE⊥BC,DE⊥C1C,从而DE⊥平面C1CE,DE⊥CH,进而CH⊥平面C1DE,故CH的长即为C到时平面C1DE的距离,由此能求出点C到平面C1DE的距离.

法二:(1)以D为原点,DA为x轴,DE为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能证明MN∥平面C1DE.

(2)求出=(﹣1,,0),平面C1DE的法向量=(4,0,1),利用向量法能求出点C到平面C1DE的距离.

【解答】解法一:

证明:(1)连结B1C,ME,∵M,E分别是BB1,BC的中点,

∴ME∥B1C,又N为A1D的中点,∴ND=A1D,

由题设知A1B1DC,∴B1CA1D,∴MEND,

∴四边形MNDE是平行四边形,

MN∥ED,

又MN⊄平面C1DE,∴MN∥平面C1DE.

解:(2)过C作C1E的垂线,垂足为H,

由已知可得DE⊥BC,DE⊥C1C,

∴DE⊥平面C1CE,故DE⊥CH,

∴CH⊥平面C1DE,故CH的长即为C到时平面C1DE的距离,

由已知可得CE=1,CC1=4,

∴C1E=,故CH=

∴点C到平面C1DE的距离为

解法二:

证明:(1)∵直四棱柱ABCD﹣A1B1C1D1的底面是菱形,

AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.

∴DD1⊥平面ABCD,DE⊥AD,

以D为原点,DA为x轴,DE为y轴,DD1为z轴,建立空间直角坐标系,

M(1,,2),N(1,0,2),D(0,0,0),E(0,,0),C1(﹣1,,4),

=(0,﹣,0),=(﹣1,),=(0,),

设平面C1DE的法向量=(x,y,z),

取z=1,得=(4,0,1),

=0,MN⊄平面C1DE,

∴MN∥平面C1DE.

解:(2)C(﹣1,,0),=(﹣1,,0),

平面C1DE的法向量=(4,0,1),

∴点C到平面C1DE的距离:

d=

【点评】本题考查线面平行的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,属于中档题.

20.(12分)已知函数f(x)=2sinx﹣xcosx﹣x,f′(x)为f(x)的导数.

(1)证明:f′(x)在区间(0,π)存在唯一零点;

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441