A.2x﹣y﹣1=0 B.2x+y﹣1=0 C.2x﹣y+1=0 D.2x+y+1=0
【分析】由已知结合四边形面积公式及三角形面积公式可得|PM|•|AB|=,说明要使|PM|•|AB|最小,则需|PM|最小,此时PM与直线l垂直.写出PM所在直线方程,与直线l的方程联立,求得P点坐标,然后写出以PM为直径的圆的方程,再与圆M的方程联立可得AB所在直线方程.
【解答】解:化圆M为(x﹣1)2+(y﹣1)2=4,
圆心M(1,1),半径r=2.
∵=2S△PAM=|PA|•|AM|=2|PA|=.
∴要使|PM|•|AB|最小,则需|PM|最小,此时PM与直线l垂直.
直线PM的方程为y﹣1=(x﹣1),即y=,
联立,解得P(﹣1,0).
则以PM为直径的圆的方程为.
联立,可得直线AB的方程为2x+y+1=0.
故选:D.
【点评】本题考查直线与圆位置关系的应用,考查圆的切线方程,考查过圆两切点的直线方程的求法,是中档题.
12.(5分)若2a+log2a=4b+2log4b,则()
A.a>2b B.a<2b C.a>b2 D.a<b2
【分析】先根据指数函数以及对数函数的性质得到2a+log2a<22b+log22b;再借助于函数的单调性即可求解结论.
【解答】解:因为2a+log2a=4b+2log4b=22b+log2b;
因为22b+log2b<22b+log22b=22b+log2b+1即2a+log2a<22b+log22b;
令f(x)=2x+log2x,由指对数函数的单调性可得f(x)在(0,+∞)内单调递增;
且f(a)<f(2b)⇒a<2b;
故选:B.
【点评】本题主要考查指数函数以及对数函数性质的应用,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)若x,y满足约束条件则z=x+7y的最大值为1.
【分析】先根据约束条件画出可行域,再利用几何意义求最值,只需求出可行域直线在y轴上的截距最大值即可.
【解答】解:x,y满足约束条件,
不等式组表示的平面区域如图所示,
由,可得A(1,0)时,目标函数z=x+7y,可得y=x+,
当直线y=x+过点A时,在y轴上截距最大,
此时z取得最大值:1+7×0=1.
故答案为:1.
【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.
14.(5分)设,为单位向量,且|+|=1,则|﹣|=.
【分析】直接利用向量的模的平方,结合已知条件转化求解即可.
【解答】解:,为单位向量,且|+|=1,
|+|2=1,
可得,
1+2+1=1,
所以,
则|﹣|==.