9.(5分)设函数f(x)=ln|2x+1|﹣ln|2x﹣1|,则f(x)()
A.是偶函数,且在(,+∞)单调递增
B.是奇函数,且在(﹣,)单调递减
C.是偶函数,且在(﹣∞,﹣)单调递增
D.是奇函数,且在(﹣∞,﹣)单调递减
【分析】求出x的取值范围,由定义判断为奇函数,利用对数的运算性质变形,再判断内层函数t=||的单调性,由复合函数的单调性得答案.
【解答】解:由,得x.
又f(﹣x)=ln|﹣2x+1|﹣ln|﹣2x﹣1|=﹣(ln|2x+1|﹣ln|2x﹣1|)=﹣f(x),
∴f(x)为奇函数;
由f(x)=ln|2x+1|﹣ln|2x﹣1|=,
∵==.
可得内层函数t=||的图象如图,
在(﹣∞,)上单调递减,在(,)上单调递增,
则(,+∞)上单调递减.
又对数式y=lnt是定义域内的增函数,
由复合函数的单调性可得,f(x)在(﹣∞,﹣)上单调递减.
故选:D.
【点评】本题考查函数的奇偶性与单调性的综合,考查复合函数单调性的求法,是中档题.
10.(5分)已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()
A. B. C.1 D.
【分析】画出图形,利用已知条件求三角形ABC的外接圆的半径,然后求解OO1即可.
【解答】解:由题意可知图形如图:△ABC是面积为的等边三角形,可得,
∴AB=BC=AC=3,
可得:AO1==,
球O的表面积为16π,
外接球的半径为:4πR2=16,解得R=2,
所以O到平面ABC的距离为:=1.
故选:C.
【点评】本题考查球的内接体问题,求解球的半径,以及三角形的外接圆的半径是解题的关键.
11.(5分)若2x﹣2y<3﹣x﹣3﹣y,则()
A.ln(y﹣x+1)>0 B.ln(y﹣x+1)<0
C.ln|x﹣y|>0 D.ln|x﹣y|<0
【分析】由2x﹣2y<3﹣x﹣3﹣y,可得2x﹣3﹣x<2y﹣3﹣y,令f(x)=2x﹣3﹣x,则f(x)在R上单调递增,且f(x)<f(y),结合函数的单调性可得x,y的大小关系,结合选项即可判断.
【解答】解:由2x﹣2y<3﹣x﹣3﹣y,可得2x﹣3﹣x<2y﹣3﹣y,
令f(x)=2x﹣3﹣x,则f(x)在R上单调递增,且f(x)<f(y),
所以x<y,即y﹣x>0,
由于y﹣x+1>1,故ln(y﹣x+1)>ln1=0,
故选:A.