订单查询
首页 其他文档
2023年上海高考数学真题
大小:0B 1页 发布时间: 2024-01-29 11:26:02 15.98k 14.59k

今天小编为大家整理了有关于2023年上海高考数学真题,希望可以对大家有帮助。

2023年上海高考数学真题

一、填空题(本大题共有12题,满分54分,第题每题4分,第题每题5分)考生应在答题纸的相应位置填写结果.

1.不等式的解集为 ;

已知,求

3.已知为等比数列,且,求

4.已知,求

5.已知,则的值域是 ;

6.已知当,则

7.已知的面积为,求

8.在中,,求

9.国内生产总值(GDP)是衡量地区经济状况的最佳指标,根据统计数据显示,某市在2020年间经济高质量增长,GDP稳步增长,第一季度和第四季度的GDP分别为231和242,且四个季度GDP的中位数与平均数相等,则2020年GDP总額为 ;

10.已知,其中,若,当时,的最大值是 ;

11.公园修建斜坡,假设斜坡起点在水平面上,斜坡与水平面的夹角为,斜坡终点距离水平面的垂直高度为4米,游客每走一米消耗的体能为,要使游客从斜坡底走到斜坡顶端所消耗的总体能最少,则

12.空间内存在三点,满足,在空间内取不同两点(不计顺序),使得这两点与可以组成正四棱锥,求方案数为 ;

二、选择题(本题共有4题,满分18分,每题4分,题每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.

13.已知,若,则.A.B.C.D.

14.根据身高和体重散点图,下列说法正确的是().A.身高越高,体重越重B.身高越高,体重越轻C.身高与体重成正相关D.身高与体重成负相关

15.设,函数在区间上的最小值为,在上的最小值为,当变化时,以下不可能的情形是().A.B.C.D.

16.在平面上,若曲线具有如下性质:存在点,使得对于任意点,都有使得.则称这条曲线为"自相关曲线".判断下列两个命题的真假().(1)所有椭圆都是“自相关曲线".(2)存在是“自相关曲线”的双曲线.A.(1)假命题;(2)真命题B.(1)真命题;(2)假命题C.(1)真命题;(2)真命题D.(1)假命题;(2)假命题

三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小邀满分6分,第2小题满分8分.直四棱柱.(1)求证:(2)若四棱柱体积为36,求二面角的大小

18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.函数(1)当是,是否存在实数,使得为奇函数(2)函数的图像过点,且的图像轴负半轴有两个交点求实数的取值范围

(本题满分14分)本题共有2个小题,第1小题满分2分,第2小題满分6分,第3小题满分8分.

21世纪汽车博览会在上海2023年6月7日在上海举行,下表为某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:

(1)若小明从这些模型中随机拿一个模型,记事件为小明取到的模型为红色外观,事件B取到模型有棕色内饰求,并据此判断事件和事件是否独立(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:1、拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观内饰都异色、以及仅外观或仅内饰同色;2、按结果的可能性大小,概率越小奖项越高;(3)奖金额为一等奖600元,二等奖300元,三等奖150元,请你分析奖项对应的结果,设为奖金额,写出的分布列并求出的数学期望

(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.曲线,第一象限内点上,的纵坐标是.(1)若到准线距离为3,求;(2)若轴上,中点在上,求点坐标和坐标原点距离;(3)直线,令是第一象限上异于的一点,直线上的投影,若点满足“对于任意都有"求的取值范围.

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.令,取点过其曲线做切线交轴于,取点过其做切线交轴于,若则停止,以此类推,得到数列.(1)若正整数,证明;(2)若正整数,试比较大小;(3)若正整数,是否存在使得依次成等差数列?若存在,求出的所有取值,若不存在,试说明理由.

反馈
我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2025 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441