答案D
答案C
答案C
6.解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a和直线b可能平行或异面或相交,故选A.
答案A
答案B
答案B
答案D
答案A
11.解析第1次循环:i=1,a=1,b=8,a
第2次循环:i=2,a=3,b=6,a
第3次循环:i=3,a=6,b=3,a>b,输出i的值为3.
答案3
答案-2
答案2
15.解析如图,当x≤m时,f(x)=|x|;当x>m时,f(x)=x2-2mx+4m,在(m,+∞)为增函数,若存在实数b,使方程f(x)=b有三个不同的根,则m2-2m·m+4m<|m|.∵m>0,∴m2-3m>0,解得m>3.
答案(3,+∞)
16.(1)证明由题意知
化简得2(sin Acos B+sin Bcos A)=sin A+sin B,即2sin(A+B)=sin A+sin B,因为A+B+C=π,所以sin(A+B)=sin(π-C)=sin C,从而sin A+sin B=2sin C,由正弦定理得a+b=2c.
17.(1)证明设FC中点为I,连接GI,HI,在△CEF中,因为点G是CE的中点,所以GI∥EF.
又EF∥OB,所以GI∥OB.
在△CFB中,因为H是FB的中点,所以HI∥BC,又HI∩GI=I,所以平面GHI∥平面ABC.
因为GH⊂平面GHI,所以GH∥平面ABC.
(2)连接OO′,则OO′⊥平面ABC.又AB=BC,且AC是圆O的直径,所以BO⊥AC.
以O为坐标原点,建立如图所示的空间直角坐标系O-xyz.
设m=(x,y,z)是平面BCF的一个法向量.
因为平面ABC的一个法向量n=(0,0,1),
18.解(1)由题意知,当n≥2时,an=Sn-Sn-1=6n+5,
当n=1时,a1=S1=11,所以an=6n+5.
又Tn=c1+c2+…+cn,得Tn=3×[2×22+3×23+…+(n+1)×2n+1],
2Tn=3×[2×23+3×24+…+(n+1)×2n+2].
两式作差,得-Tn=3×[2×22+23+24+…+2n+1-(n+1)×2n+2]
=-3n·2n+2,所以Tn=3n·2n+2.
19.解(1)记事件A:“甲第一轮猜对”,记事件B:“乙第一轮猜对”,
记事件C:“甲第二轮猜对”,记事件D:“乙第二轮猜对”,
记事件E:“‘星队’至少猜对3个成语”.