C、﹣2或4 D、﹣2或2
考点:分段函数的解析式求法及其图象的作法。
专题:计算题。
分析:分段函数分段处理,我们利用分类讨论的方法,分a≤0与a>0两种情况,根据各段上函数的解析式,分别构造关于a的方程,解方程即可求出满足条件 的a值.
解答:解:当a≤0时
若f(a)=4,则﹣a=4,解得a=﹣4
当a>0时
若f(a)=4,则a2=4,解得a=2或a=﹣2(舍去)
故实数a=﹣4或a=2
故选B
点评:本题考查的知识点是分段函数,分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上x、y取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.
A、3﹣i B、3+i
C、1+3i D、3
考点:复数代数形式的混合运算。
专题:计算题。
故选 A.
点评:本题考查复数代数形式的混合运算,共轭复数,考查计算能力,是基础题,常考题型.
考点:由三视图还原实物图。
分析:根据已知中的三视图,结合三视图中有两个三角形即为锥体,有两个矩形即为柱体,有两个梯形即为台体,将几何体分解为简单的几何体分析后,即可得到答案.
解答:解:由已知中三视图的上部分有两个矩形,一个三角形
故该几何体上部分是一个三棱柱
下部分是三个矩形
故该几何体下部分是一个四棱柱
故选D
点评:本题考查的知识点是由三视图还原实物图,如果三视图均为三角形,则该几何体必为三棱锥;如果三视图中有两个三角形和一个多边形,则该几何体为N棱锥(N值由另外一个视图的边数确定);如果三视图中有两个为矩形和一个多边形,则该几何体为N棱柱(N值由另外一个视图的边数确定);如果三视图中有两个为梯形和一个多边形,则该几何体为N棱柱(N值由另外一个视图的边数确定);如果三视图中有两个三角形和一个圆,则几何体为圆锥.如果三视图中有两个矩形和一个圆,则几何体为圆柱.如果三视图中有两个梯形和一个圆,则几何体为圆台.
4、(2011•浙江)下列命题中错误的是()
A、如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B、如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
C、如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ D、如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β
考点:平面与平面垂直的性质。
专题:常规题型。
分析:本题考查的是平面与平面垂直的性质问题.在解答时:A注意线面平行的定义再结合实物即可获得解答;B反证法即可获得解答;C利用面面垂直的性质通过在一个面内作交线的垂线,然后用线面垂直的判定定理即可获得解答;D结合实物举反例即可.
解答:解:由题意可知:
A、结合实物:教室的门面与地面垂直,门面的上棱对应的直线就与地面平行,故此命题成立;
B、假若平面α内存在直线垂直于平面β,根据面面垂直的判定定理可知两平面垂直.故此命题成立;
C、结合面面垂直的性质可以分别在α、β内作异于l的直线垂直于交线,再由线面垂直的性质定理可知所作的垂线平行,进而得到线面平行再由线面平行的性质可知所作的直线与l平行,又∵两条平行线中的一条垂直于平面那么另一条也垂直于平面,故命题成立;
D、举反例:教室内侧墙面与地面垂直,而侧墙面内有很多直线是不垂直与地面的.故此命题错误.
故选D.
点评:本题考查的是平面与平面垂直的性质问题.在解答的过程当中充分体现了面面垂直、线面垂直、线面平行的定义判定定理以及性质定理的应用.值得同学们体会和反思.
A、14 B、16
C、17 D、19