,
故x2+2y2=(x12+4x22+4x1x2)+2(y12+4y22+4y1y2)=20+4(x1x2+2y1y2)
设k0M,kON分别为直线OM,ON的斜率,根据题意可知k0MkON=﹣
∴x1x2+2y1y2=0
∴x2+2y2=20
所以P在椭圆设该椭圆的左,右焦点为F1,F2,由椭圆的定义可推断出|PF1|+|PF2|为定值,因为c=,则这两个焦点坐标是(﹣,0)(,0)
点评:本题主要考查了椭圆的简单性质.考查了学生分析问题和解决问题的能力.
21.(2011•重庆)设实数数列{an}的前n项和Sn满足Sn+1=an+1Sn(n∈N*).
(Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3.
(Ⅱ)求证:对k≥3有0≤ak≤.
考点:数列与不等式的综合;数列递推式。
专题:综合题。
分析:(Ⅰ)由题意,得S22=﹣2S2,由S2是等比中项知S2=﹣2,由此能求出S2和a3.
(Ⅱ)由题设条件知Sn+an+1=an+1Sn,Sn≠1,an+1≠1,且,,由此能够证明对k≥3有0≤an﹣1≤.
解答:解:(Ⅰ)由题意,
得S22=﹣2S2,
由S2是等比中项知S2≠0,
∴S2=﹣2.
由S2+a3=a3S2,解得.
(Ⅱ)证明:因为Sn+1=a1+a2+a3+…+an+an+1=an+1+Sn,
由题设条件知Sn+an+1=an+1Sn,
∴Sn≠1,an+1≠1,且,
又从而对k≥3,有
0≤ak≤.