订单查询
首页 其他文档
全国统一高考数学试卷(理科)(全国卷Ⅱ)
大小:0B 10页 发布时间: 2024-01-29 12:17:26 3.02k 1.29k

于是,当n≥2时,

an=Sn﹣Sn﹣1=3n+(a﹣3)×2n﹣1﹣3n﹣1﹣(a﹣3)×2n﹣2=2×3n﹣1+(a﹣3)2n﹣2,

an+1﹣an=4×3n﹣1+(a﹣3)2n﹣2=

当n≥2时,⇔a≥﹣9.

又a2=a1+3>a1.

综上,所求的a的取值范围是[﹣9,+∞).(12分)

【点评】本题考查数列的综合运用,解题时要仔细审题,注意挖掘题设中的隐含条件.

21.(12分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.

(Ⅰ)若,求k的值;

(Ⅱ)求四边形AEBF面积的最大值.

【考点】96:平行向量(共线);KH:直线与圆锥曲线的综合.

【专题】11:计算题;16:压轴题.

【分析】(1)依题可得椭圆的方程,设直线AB,EF的方程分别为x+2y=2,y=kx,D(x0,kx0),E(x1,kx1),F(x2,kx2),且x1,x2满足方程(1+4k2)x2=4,进而求得x2的表达式,进而根据求得x0的表达式,由D在AB上知x0+2kx0=2,进而求得x0的另一个表达式,两个表达式相等求得k.

(Ⅱ)由题设可知|BO|和|AO|的值,设y1=kx1,y2=kx2,进而可表示出四边形AEBF的面积进而根据基本不等式的性质求得最大值.

【解答】解:(Ⅰ)依题设得椭圆的方程为

直线AB,EF的方程分别为x+2y=2,y=kx(k>0).

如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2,

且x1,x2满足方程(1+4k2)x2=4,

.①

知x0﹣x1=6(x2﹣x0),得

由D在AB上知x0+2kx0=2,得

所以

化简得24k2﹣25k+6=0,

解得

(Ⅱ)由题设,|BO|=1,|AO|=2.由(Ⅰ)知,E(x1,kx1),F(x2,kx2),

不妨设y1=kx1,y2=kx2,由①得x2>0,根据E与F关于原点对称可知y2=﹣y1>0,

故四边形AEBF的面积为S=S△OBE+S△OBF+S△OAE+S△OAF

=•(﹣y1)

=

=x2+2y2

===

当x2=2y2时,上式取等号.所以S的最大值为

【点评】本题主要考查了直线与圆锥曲线的综合问题.直线与圆锥曲线的综合问题是支撑圆锥曲线知识体系的重点内容,问题的解决具有入口宽、方法灵活多样等,而不同的解题途径其运算量繁简差别很大.

22.(12分)设函数

(Ⅰ)求f(x)的单调区间;

(Ⅱ)如果对任何x≥0,都有f(x)≤ax,求a的取值范围.

【考点】3R:函数恒成立问题;6B:利用导数研究函数的单调性

【专题】11:计算题;16:压轴题.

【分析】(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间.

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441