在β内过C作l的垂线.垂足为D
连接AD,有三垂线定理可知AD⊥l,
故∠ADC为二面角α﹣l﹣β的平面角,为60°
又由已知,∠ABD=30°
连接CB,则∠ABC为AB与平面β所成的角
设AD=2,则AC=,CD=1
AB==4
∴sin∠ABC=;
故答案为.
【点评】本题主要考查了平面与平面之间的位置关系,以及直线与平面所成角,考查空间想象能力、运算能力和推理论证能力,属于基础题.
16.(4分)(2010•四川)设S为复数集C的非空子集.若对任意x,y∈S,都有x+y,x﹣y,xy∈S,则称S为封闭集.下列命题:
①集合S={a+bi|(a,b为整数,i为虚数单位)}为封闭集;
②若S为封闭集,则一定有0∈S;
③封闭集一定是无限集;
④若S为封闭集,则满足S⊆T⊆C的任意集合T也是封闭集.
其中真命题是①②.(写出所有真命题的序号)
【考点】集合的包含关系判断及应用;子集与真子集;复数的基本概念
【专题】计算题;综合题;压轴题;新定义.
【分析】由题意直接验证①即可判断正误;令x=y可推出②是正确的;找出反例集合S={0},即可判断③的错误.S={0},T={0,1},推出﹣1不属于T,判断④是错误的.
【解答】解:两个复数的和是复数,两个复数的差也是复数,所以集合S={a+bi|(a,b为整数,i为虚数单位)}为封闭集,①正确.
当S为封闭集时,因为x﹣y∈S,取x=y,得0∈S,②正确
对于集合S={0},显然满足所有条件,但S是有限集,③错误
取S={0},T={0,1},满足S⊆T⊆C,但由于0﹣1=﹣1不属于T,故T不是封闭集,④错误.
【点评】本题考查复数的基本概念,集合的子集,集合的包含关系判断及应用,是中档题.
三、解答题(共6小题,满分74分)
17.(12分)(2010•四川)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料.
(Ⅰ)求三位同学都没有中奖的概率;
(Ⅱ)求三位同学中至少有两位没有中奖的概率.
【考点】互斥事件的概率加法公式;相互独立事件的概率乘法公式
【专题】概率与统计.
【分析】(Ⅰ)先求出甲、乙、丙没中奖的概率,因此事件为相互独立事件,代入公式求解;
(Ⅱ)先求出此事件的对立事件,再由对立事件的公式进行求解.
【解答】解:设甲、乙、丙中奖的事件分别为A、B、C,则P(A)=P(B)=P(C)=,
甲、乙、丙没中奖的事件分别为、、,则P()P=()=P()=,
(Ⅰ)由于“三位同学都没有中奖”是三个相互独立事件,
∴P()=P()P()P()=
答:三位同学都没有中奖的概率为;
(Ⅱ)“三位同学中至少有两位没有中奖”的对立事件为“至少有两位中奖”
∴1﹣P(•B•C+A••C+A•B•+A•B•C)