订单查询
首页 其他文档
山东省高考理科数学试卷
大小:0B 9页 发布时间: 2024-01-29 12:27:32 12.94k 11.79k

9.(5分)(2008•山东)展开式中的常数项为()

A.﹣1320 B.1320 C.﹣220 D.220

【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0求出常数项.

【解答】解:

得r=9

故选项为C

10.(5分)(2008•山东)4.设椭圆C1的离心率为,焦点在x轴上且长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为()

A.=1 B.=1

C.=1 D.=1

【分析】在椭圆C1中,由题设条件能够得到,曲线C2是以F1(﹣5,0),F2(5,0),为焦点,实轴长为8的双曲线,由此可求出曲线C2的标准方程.

【解答】解:在椭圆C1中,由,得

椭圆C1的焦点为F1(﹣5,0),F2(5,0),

曲线C2是以F1、F2为焦点,实轴长为8的双曲线,

故C2的标准方程为:=1,

故选A.

11.(5分)(2008•山东)已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()

A.10 B.20 C.30 D.40

【分析】根据题意可知,过(3,5)的最长弦为直径,最短弦为过(3,5)且垂直于该直径的弦,分别求出两个量,然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可.

【解答】解:圆的标准方程为(x﹣3)2+(y﹣4)2=52,

由题意得最长的弦|AC|=2×5=10,

根据勾股定理得最短的弦|BD|=2=4,且AC⊥BD,

四边形ABCD的面积S=|AC|•|BD|=×10×4=20

故选B

12.(5分)(2008•山东)设二元一次不等式组所表示的平面区域为M,使函数y=ax(a>0,a≠1)的图象过区域M的a的取值范围是()

A.[1,3] B.[2,] C.[2,9] D.[,9]

【分析】先依据不等式组,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用函数y=ax(a>0,a≠1)的图象特征,结合区域的角上的点即可解决问题.

【解答】解析:平面区域M如如图所示.

求得A(2,10),C(3,8),B(1,9).

由图可知,欲满足条件必有a>1且图象在过B、C两点的图象之间.

当图象过B点时,a1=9,

∴a=9.

当图象过C点时,a3=8,

∴a=2.

故a的取值范围为[2,9=.

故选C.

二、填空题(共4小题,每小题4分,满分16分)

13.(4分)(2008•山东)执行如图所示的程序框图,若p=0.8,则输出的n=4.

反馈
我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441