订单查询
首页 其他文档
山东省高考理科数学试卷
大小:0B 9页 发布时间: 2024-01-29 12:27:32 12.94k 11.79k

因为

所以表中第1行至第12行共含有数列{an}的前78项,故a81在表中第13行第三列,

因此.又,所以q=2.

记表中第k(k≥3)行所有项的和为S,

20.(12分)(2008•山东)如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.

(Ⅰ)证明:AE⊥PD;

(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E﹣AF﹣C的余弦值.

【分析】(1)要证明AE⊥PD,我们可能证明AE⊥面PAD,由已知易得AE⊥PA,我们只要能证明AE⊥AD即可,由于底面ABCD为菱形,故我们可以转化为证明AE⊥BC,由已知易我们不难得到结论.

(2)由EH与平面PAD所成最大角的正切值为,我们分析后可得PA的值,由(1)的结论,我们进而可以证明平面PAC⊥平面ABCD,则过E作EO⊥AC于O,则EO⊥平面PAC,过O作OS⊥AF于S,连接ES,则∠ESO为二面角E﹣AF﹣C的平面角,然后我们解三角形ASO,即可求出二面角E﹣AF﹣C的余弦值.

【解答】证明:(Ⅰ)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形.

因为E为BC的中点,所以AE⊥BC.

又BC∥AD,因此AE⊥AD.

因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.

而PA⊂平面PAD,AD⊂平面PAD且PA∩AD=A,

所以AE⊥平面PAD.又PD⊂平面PAD,

所以AE⊥PD.

解:(Ⅱ)设AB=2,H为PD上任意一点,连接AH,EH.

由(Ⅰ)知AE⊥平面PAD,

则∠EHA为EH与平面PAD所成的角.

在Rt△EAH中,

所以当AH最短时,∠EHA最大,

即当AH⊥PD时,∠EHA最大.

此时

因此.又AD=2,所以∠ADH=45°,

所以PA=2.

因为PA⊥平面ABCD,PA⊂平面PAC,

所以平面PAC⊥平面ABCD.

过E作EO⊥AC于O,则EO⊥平面PAC,

过O作OS⊥AF于S,连接ES,则∠ESO为二面角E﹣AF﹣C的平面角,

在Rt△AOE中,

又F是PC的中点,在Rt△ASO中,

在Rt△ESO中,

即所求二面角的余弦值为

21.(12分)(2008•山东)已知函数,其中n∈N*,a为常数.

(Ⅰ)当n=2时,求函数f(x)的极值;

(Ⅱ)当a=1时,证明:对任意的正整数n,当x≥2时,有f(x)≤x﹣1.

反馈
我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441