【分析】(1)欲求:“当n=2时,”的极值,利用导数,求其导函数的零点及单调性进行判断即可;
(2)欲证:“f(x)≤x﹣1”,令,利用导函数的单调性,只要证明函数f(x)的最大值是x﹣1即可.
【解答】解:(Ⅰ)解:由已知得函数f(x)的定义域为{x|x>1},
当n=2时,,所以.
(1)当a>0时,由f'(x)=0得,,
此时.
当x∈(1,x1)时,f'(x)<0,f(x)单调递减;
当x∈(x1,+∞)时,f'(x)>0,f(x)单调递增.
(2)当a≤0时,f'(x)<0恒成立,所以f(x)无极值.
综上所述,n=2时,
当a>0时,f(x)在处取得极小值,极小值为.
当a≤0时,f(x)无极值.
(Ⅱ)证法一:因为a=1,所以.
当n为偶数时,
令,
则(x≥2).
所以当x∈[2,+∞)时,g(x)单调递增,
又g(2)=0,
因此恒成立,
所以f(x)≤x﹣1成立.
当n为奇数时,要证f(x)≤x﹣1,由于,所以只需证ln(x﹣1)≤x﹣1,
令h(x)=x﹣1﹣ln(x﹣1),
则(x≥2),
所以当x∈[2,+∞)时,h(x)=x﹣1﹣ln(x﹣1)单调递增,又h(2)=1>0,
所以当x≥2时,恒有h(x)>0,即ln(x﹣1)<x﹣1命题成立.
综上所述,结论成立.
证法二:当a=1时,.
当x≥2时,对任意的正整数n,恒有,
故只需证明1+ln(x﹣1)≤x﹣1.
令h(x)=x﹣1﹣(1+ln(x﹣1))=x﹣2﹣ln(x﹣1),x∈[2,+∞),
则,
当x≥2时,h'(x)≥0,故h(x)在[2,+∞)上单调递增,
因此当x≥2时,h(x)≥h(2)=0,即1+ln(x﹣1)≤x﹣1成立.
故当x≥2时,有.
即f(x)≤x﹣1.
22.(14分)(2008•山东)如图,设抛物线方程为x2=2py(p>0),M为直线y=﹣2p上任意一点,过M引抛物线的切线,切点分别为A,B.
(Ⅰ)求证:A,M,B三点的横坐标成等差数列;
(Ⅱ)已知当M点的坐标为(2,﹣2p)时,.求此时抛物线的方程;
(Ⅲ)是否存在点M,使得点C关于直线AB的对称点D在抛物线x2=2py(p>0)上,其中,点C满足(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.