订单查询
首页 其他文档
山东省高考理科数学试卷
大小:0B 9页 发布时间: 2024-01-29 12:27:32 12.94k 11.79k

【分析】(1)欲求:“当n=2时,”的极值,利用导数,求其导函数的零点及单调性进行判断即可;

(2)欲证:“f(x)≤x﹣1”,令,利用导函数的单调性,只要证明函数f(x)的最大值是x﹣1即可.

【解答】解:(Ⅰ)解:由已知得函数f(x)的定义域为{x|x>1},

当n=2时,,所以

(1)当a>0时,由f'(x)=0得

此时

当x∈(1,x1)时,f'(x)<0,f(x)单调递减;

当x∈(x1,+∞)时,f'(x)>0,f(x)单调递增.

(2)当a≤0时,f'(x)<0恒成立,所以f(x)无极值.

综上所述,n=2时,

当a>0时,f(x)在处取得极小值,极小值为

当a≤0时,f(x)无极值.

(Ⅱ)证法一:因为a=1,所以

当n为偶数时,

(x≥2).

所以当x∈[2,+∞)时,g(x)单调递增,

又g(2)=0,

因此恒成立,

所以f(x)≤x﹣1成立.

当n为奇数时,要证f(x)≤x﹣1,由于,所以只需证ln(x﹣1)≤x﹣1,

令h(x)=x﹣1﹣ln(x﹣1),

(x≥2),

所以当x∈[2,+∞)时,h(x)=x﹣1﹣ln(x﹣1)单调递增,又h(2)=1>0,

所以当x≥2时,恒有h(x)>0,即ln(x﹣1)<x﹣1命题成立.

综上所述,结论成立.

证法二:当a=1时,

当x≥2时,对任意的正整数n,恒有

故只需证明1+ln(x﹣1)≤x﹣1.

令h(x)=x﹣1﹣(1+ln(x﹣1))=x﹣2﹣ln(x﹣1),x∈[2,+∞),

当x≥2时,h'(x)≥0,故h(x)在[2,+∞)上单调递增,

因此当x≥2时,h(x)≥h(2)=0,即1+ln(x﹣1)≤x﹣1成立.

故当x≥2时,有

即f(x)≤x﹣1.

22.(14分)(2008•山东)如图,设抛物线方程为x2=2py(p>0),M为直线y=﹣2p上任意一点,过M引抛物线的切线,切点分别为A,B.

(Ⅰ)求证:A,M,B三点的横坐标成等差数列;

(Ⅱ)已知当M点的坐标为(2,﹣2p)时,.求此时抛物线的方程;

(Ⅲ)是否存在点M,使得点C关于直线AB的对称点D在抛物线x2=2py(p>0)上,其中,点C满足(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.

反馈
我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441