(Ⅰ)打满3局比赛还未停止的概率;
(Ⅱ)比赛停止时已打局数ξ的分别列与期望Eξ.
19.(13分)(2008•重庆)如图,在△ABC中,B=90°,AC=,D、E两点分别在AB、AC上.使,DE=3.现将△ABC沿DE折成直二角角,求
(Ⅰ)异面直线AD与BC的距离;
(Ⅱ)二面角A﹣EC﹣B的大小(用反三角函数表示).
20.(13分)(2008•重庆)设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在点(﹣1,f(﹣1))
处的切线垂直于y轴.
(Ⅰ)用a分别表示b和c;
(Ⅱ)当bc取得最小值时,求函数g(x)=﹣f(x)e﹣x的单调区间.
21.(12分)(2008•重庆)如图,M(﹣2,0)和N(2,0)是平面上的两点,动点P满足:|PM|+|PN|=6.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)若,求点P的坐标.
22.(12分)(2008•重庆)设各项均为正数的数列{an}满足a1=2,an=an+2(n∈N*).
(Ⅰ)若a2=,求a3,a4,并猜想a2008的值(不需证明);
(Ⅱ)记bn=a1a2…an(n∈N*),若bn≥2对n≥2恒成立,求a2的值及数列{bn}的通项公式.
参考答案与试题解析
一、选择题(共10小题,每小题5分,满分50分)
1.(5分)(2008•重庆)复数=()
A.1+2iB.1﹣2iC.﹣1D.3
考点:复数代数形式的混合运算.1706460
分析:利用复数i的幂的运算,化简复数的分母,即可.
解答:解:故选A.
点评:本题考查复数代数形式的运算,复数的幂的运算,是基础题.
2.(5分)(2008•重庆)设m,n是整数,则“m,n均为偶数”是“m+n是偶数”的()
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断.1706460
专题:计算题.
分析:先判断p⇒q与q⇒p的真假,再根据充要条件的定义给出结论;也可判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
解答:解:m,n均为偶数,则m+n为偶数,即m,n均为偶数”⇒“m+n是偶数”为真命题但m+n为偶数推不出m,n为偶数,如m=1,n=1.“m,n均为偶数”是“m+n是偶数”的充分而不必要条件故选A
点评:判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
3.(5分)(2008•重庆)圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的位置关系是()
A.相离B.相交C.外切D.内切
考点:圆与圆的位置关系及其判定.1706460
专题:计算题.
分析:求出半径,求出圆心,看两个圆的圆心距与半径的关系即可.
解答:解:圆O1:x2+y2﹣2x=0,即(x﹣1)2+y2=1,圆心是O1(1,0),半径是r1=1圆O2:x2+y2﹣4y=0,即x2+(y﹣2)2=4,圆心是O2(0,2),半径是r2=2∵|O1O2|=,故|r1﹣r2|<|O1O2|<|r1+r2|∴两圆的位置关系是相交.故选 B
点评:本题考查圆与圆的位置关系,是基础题.