∴PC⊥平面BED
(II)=(0,0,2),=(,﹣b,0)
设平面PAB的法向量为=(x,y,z),则
取=(b,,0)
设平面PBC的法向量为=(p,q,r),则
取=(1,﹣,)
∵平面PAB⊥平面PBC,∴•=b﹣=0.故b=
∴=(1,﹣1,),=(﹣,﹣,2)
∴cos<,>==
设PD与平面PBC所成角为θ,θ∈[0,],则sinθ=
∴θ=30°
∴PD与平面PBC所成角的大小为30°
【点评】本题主要考查了利用空间直角坐标系和空间向量解决立体几何问题的一般方法,线面垂直的判定定理,空间线面角的求法,有一定的运算量,属中档题
20.(12分)乒乓球比赛规则规定:一局比赛,对方比分在10平前,一方连续发球2次后,对方再连续发球两次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1:2的概率;
(2)求开始第5次发球时,甲领先得分的概率.
【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CA:n次独立重复试验中恰好发生k次的概率
【专题】5I:概率与统计.
【分析】(Ⅰ)记Ai表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2,Bi表示事件:第3次和第4次这两次发球,甲共得i分,i=0,1,2,A表示事件:第3次发球,甲得1分,B表示事件:开始第4次发球时,甲、乙的比分为1比2,C表示事件:开始第5次发球时,甲得分领先.B=,由此能求出开始第4次发球时,甲、乙的比分为1:2的概率.
(Ⅱ),P(B1)=2×0.4×0.6=0.48,,,由C=A1•B2+A2•B1+A2•B2,能求出开始第5次发球时,甲领先得分的概率.
【解答】解:(Ⅰ)记Ai表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2,
Bi表示事件:第3次和第4次这两次发球,甲共得i分,i=0,1,2,
A表示事件:第3次发球,甲得1分,
B表示事件:开始第4次发球时,甲、乙的比分为1比2,
C表示事件:开始第5次发球时,甲得分领先.
∴B=,
P(A)=0.4,P(A0)=0.42=0.16,
P(A1)=2×0.6×0.4=0.48,
P(B)=
=P(A0•A)+P()
=
=0.16×0.4+0.48×(1﹣0.4)
=0.352.
答:开始第4次发球时,甲、乙的比分为1:2的概率是0.352.
(Ⅱ),
P(B1)=2×0.4×0.6=0.48,
,
,
∵C=A1•B2+A2•B1+A2•B2,