∴C1O⊥面A1BD
而BD⊂面A1BD
∴BD⊥C1O,
∵OH⊥BD,C1O∩OH=O,
∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角
设AC=a,则,,
∴sin∠C1DO=
∴∠C1DO=30°
即二面角A1﹣BD﹣C1的大小为30°
【点评】本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.
20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.
【考点】J1:圆的标准方程;K8:抛物线的性质;KI:圆锥曲线的综合
【专题】15:综合题;16:压轴题.
【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.
(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.
【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p
点A到准线l的距离,
∵△ABD的面积S△ABD=,
∴=,
解得p=2,所以F坐标为(0,1),
∴圆F的方程为x2+(y﹣1)2=8.
(2)由题设,则,
∵A,B,F三点在同一直线m上,
又AB为圆F的直径,故A,B关于点F对称.
由点A,B关于点F对称得:
得:,直线,切点
直线
坐标原点到m,n距离的比值为.
【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
21.(12分)已知函数f(x)满足f(x)=f′(1)ex﹣1﹣f(0)x+x2;
(1)求f(x)的解析式及单调区间;
(2)若,求(a+1)b的最大值.
【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值
【专题】15:综合题;16:压轴题;2A:探究型;35:转化思想.
【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;
(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b的最大值
【解答】解:(1)f(x)=f'(1)ex﹣1﹣f(0)x+⇒f'(x)=f'(1)ex﹣1﹣f(0)+x