订单查询
首页 其他文档
文科高考数学真题全国卷1
大小:0B 12页 发布时间: 2024-01-29 12:38:59 2.37k 2.31k

令x=1得:f(0)=1

∴f(x)=f'(1)ex﹣1﹣x+令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e

故函数的解析式为f(x)=ex﹣x+

令g(x)=f'(x)=ex﹣1+x

∴g'(x)=ex+1>0,由此知y=g(x)在x∈R上单调递增

当x>0时,f'(x)>f'(0)=0;当x<0时,有

f'(x)<f'(0)=0得:

函数f(x)=ex﹣x+的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)

(2)f(x)≥﹣(a+1)x﹣b≥0得h′(x)=ex﹣(a+1)

①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾

②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)

得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b

∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)

令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)

∴F'(x)>0⇔0<x<

当x=时,F(x)max=

即当a=时,(a+1)b的最大值为

【点评】本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,计算量大,易马虎出错.

四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.

22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:

(1)CD=BC;

(2)△BCD∽△GBD.

【考点】N4:相似三角形的判定

【专题】14:证明题.

【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;

(2)证明两组对应角相等,即可证得△BCD~△GBD.

【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点

∴DF∥BC,AD=DB

∵AB∥CF,∴四边形BDFC是平行四边形

∴CF∥BD,CF=BD

∴CF∥AD,CF=AD

∴四边形ADCF是平行四边形

∴AF=CD

,∴BC=AF,∴CD=BC.

(2)由(1)知,所以

所以∠BGD=∠DBC.

因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.

所以△BCD~△GBD.

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441