订单查询
首页 其他文档
文科高考数学真题全国卷1
大小:0B 12页 发布时间: 2024-01-29 12:38:59 2.37k 2.31k

15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .

16.(5分)数列{an}满足an+1+(﹣1)nan=2n﹣1,则{an}的前60项和为 .

三、解答题:解答应写出文字说明,证明过程或演算步骤.

17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+asinC﹣b﹣c=0

(1)求A;

(2)若a=2,△ABC的面积为;求b,c.

18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.

(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.

(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:

日需求量n14151617181920

频数10201616151310

以100天记录的各需求量的频率作为各需求量发生的概率.

(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;

(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.

19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD

(1)证明:DC1⊥BC;

(2)求二面角A1﹣BD﹣C1的大小.

20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;

(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;

(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.

21.(12分)已知函数f(x)满足f(x)=f′(1)ex﹣1﹣f(0)x+x2;

(1)求f(x)的解析式及单调区间;

(2)若,求(a+1)b的最大值.

四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.

22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:

(1)CD=BC;

(2)△BCD∽△GBD.

23.选修4﹣4;坐标系与参数方程

已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).

(1)求点A,B,C,D的直角坐标;

(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.

24.已知函数f(x)=|x+a|+|x﹣2|

①当a=﹣3时,求不等式f(x)≥3的解集;

②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.

参考答案与试题解析

一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.

1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441