【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.
7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()
A.6 B.9 C.12 D.18
【考点】L!:由三视图求面积、体积
【专题】11:计算题.
【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.
【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;
底面三角形斜边长为6,高为3的等腰直角三角形,
此几何体的体积为V=×6×3×3=9.
故选:B.
【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.
8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()
A. B. C.4 D.8
【考点】KI:圆锥曲线的综合
【专题】11:计算题;16:压轴题.
【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.
【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),
y2=16x的准线l:x=﹣4,
∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,
∴A(﹣4,2),B(﹣4,﹣2),
将A点坐标代入双曲线方程得=4,
∴a=2,2a=4.
故选:C.
【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
9.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()
A. B. C. D.(0,2]
【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式
【专题】11:计算题;16:压轴题.
【分析】法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.
法二:可以通过角的范围,直接推导ω的范围即可.
【解答】解:法一:令:不合题意 排除(D)
合题意 排除(B)(C)
法二:,
得:.
故选:A.
【点评】本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.
10.(5分)已知函数f(x)=,则y=f(x)的图象大致为()
A. B.
C. D.