【考点】4N:对数函数的图象与性质;4T:对数函数图象与性质的综合应用
【专题】11:计算题.
【分析】考虑函数f(x)的分母的函数值恒小于零,即可排除A,C,由f(x)的定义域能排除D,这一性质可利用导数加以证明
【解答】解:设
则g′(x)=
∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数
∴g(x)<g(0)=0
∴f(x)=<0
得:x>0或﹣1<x<0均有f(x)<0排除A,C,
又f(x)=中,,能排除D.
故选:B.
【点评】本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题
11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()
A. B. C. D.
【考点】LF:棱柱、棱锥、棱台的体积
【专题】11:计算题;5F:空间位置关系与距离.
【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.
【解答】解:根据题意作出图形:
设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,
延长CO1交球于点D,则SD⊥平面ABC.
∵CO1==,
∴OO1==,
∴高SD=2OO1=,
∵△ABC是边长为1的正三角形,
∴S△ABC=,
∴V三棱锥S﹣ABC==.
故选:C.
【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.
12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()
A.1﹣ln2 B. C.1+ln2 D.
【考点】4R:反函数;IT:点到直线的距离公式
【专题】5D:圆锥曲线的定义、性质与方程.
【分析】由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,
设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.
【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,
函数上的点到直线y=x的距离为,
设g(x)=(x>0),则,
由≥0可得x≥ln2,
由<0可得0<x<ln2,