∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,
∴当x=ln2时,函数g(x)min=1﹣ln2,
,
由图象关于y=x对称得:|PQ|最小值为.
故选:B.
【点评】本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好
二.填空题:本大题共4小题,每小题5分.
13.(5分)已知向量夹角为45°,且,则=3.
【考点】9O:平面向量数量积的性质及其运算;9S:数量积表示两个向量的夹角
【专题】11:计算题;16:压轴题.
【分析】由已知可得,=,代入|2|====可求
【解答】解:∵,=1
∴=
∴|2|====
解得
故答案为:3
【点评】本题主要考查了向量的数量积 定义的应用,向量的数量积性质||=是求解向量的模常用的方法
14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为.
【考点】7C:简单线性规划
【专题】11:计算题.
【分析】先作出不等式组表示的平面区域,由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小,结合函数的图形可求z的最大与最小值,从而可求z的范围
【解答】解:作出不等式组表示的平面区域
由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小
结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A时,截距最小,z最大
由可得B(1,2),由可得A(3,0)
∴Zmax=3,Zmin=﹣3
则z=x﹣2y∈[﹣3,3]
故答案为:[﹣3,3]
【点评】平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.
15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.
【考点】CP:正态分布曲线的特点及曲线所表示的意义
【专题】11:计算题;16:压轴题.
【分析】先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可
【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)
得:三个电子元件的使用寿命超过1000小时的概率为
设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}
C={该部件的使用寿命超过1000小时}
则P(A)=,P(B)=