P(C)=P(AB)=P(A)P(B)=×=
故答案为
【点评】本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题
16.(5分)数列{an}满足an+1+(﹣1)nan=2n﹣1,则{an}的前60项和为1830.
【考点】8E:数列的求和;8H:数列递推式
【专题】11:计算题;35:转化思想;4M:构造法;54:等差数列与等比数列.
【分析】由题意可得 a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得 a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用数列的结构特征,求出{an}的前60项和
【解答】解:∵an+1+(﹣1)n an=2n﹣1,
故有 a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.
从而可得 a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…
从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.
{an}的前60项和为 15×2+(15×8+)=1830
【点评】本题考查数列递推式,训练了利用构造等差数列求数列的前n项和,属中档题.
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+asinC﹣b﹣c=0
(1)求A;
(2)若a=2,△ABC的面积为;求b,c.
【考点】HP:正弦定理
【专题】33:函数思想;4R:转化法;58:解三角形.
【分析】(1)已知等式利用正弦定理化简,整理后得到sin(A﹣30°)=.即可求出A的值;
(2)若a=2,由△ABC的面积为,求得bc=4.①,再利用余弦定理可得b+c=4.②,结合①②求得b和c的值.
【解答】解:(1)由正弦定理得:acosC+asinC﹣b﹣c=0,
即sinAcosC+sinAsinC=sinB+sinC
∴sinAcosC+sinAsinC=sin(A+C)+sinC,
即sinA﹣cosA=1
∴sin(A﹣30°)=.
∴A﹣30°=30°
∴A=60°;
(2)若a=2,△ABC的面积=,
∴bc=4.①
再利用余弦定理可得:a2=b2+c2﹣2bc•cosA
=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,
∴b+c=4.②
结合①②求得b=c=2.
【点评】本题考查了正弦定理及余弦定理的应用,考查了三角形面积公式的应用,是中档题.
18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:
日需求量n14151617181920
频数10201616151310