【分析】利用x=lnπ>1,0<y=log52<,1>z=>,即可得到答案.
【解答】解:∵x=lnπ>lne=1,
0<log52<log5=,即y∈(0,);
1=e0>=>=,即z∈(,1),
∴y<z<x.
故选:D.
【点评】本题考查不等式比较大小,掌握对数函数与指数函数的性质是解决问题的关键,属于基础题.
10.(5分)已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()
A.﹣2或2 B.﹣9或3 C.﹣1或1 D.﹣3或1
【考点】53:函数的零点与方程根的关系;6D:利用导数研究函数的极值
【专题】11:计算题.
【分析】求导函数,确定函数的单调性,确定函数的极值点,利用函数y=x3﹣3x+c的图象与x轴恰有两个公共点,可得极大值等于0或极小值等于0,由此可求c的值.
【解答】解:求导函数可得y′=3(x+1)(x﹣1),
令y′>0,可得x>1或x<﹣1;令y′<0,可得﹣1<x<1;
∴函数在(﹣∞,﹣1),(1,+∞)上单调增,(﹣1,1)上单调减,
∴函数在x=﹣1处取得极大值,在x=1处取得极小值.
∵函数y=x3﹣3x+c的图象与x轴恰有两个公共点,
∴极大值等于0或极小值等于0.
∴1﹣3+c=0或﹣1+3+c=0,
∴c=﹣2或2.
故选:A.
【点评】本题考查导数知识的运用,考查函数的单调性与极值,解题的关键是利用极大值等于0或极小值等于0.
11.(5分)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()
A.12种 B.18种 C.24种 D.36种
【考点】D9:排列、组合及简单计数问题
【专题】11:计算题;16:压轴题.
【分析】由题意,可按分步原理计数,对列的情况进行讨论比对行讨论更简洁.
【解答】解:由题意,可按分步原理计数,
首先,对第一列进行排列,第一列为a,b,c的全排列,共有种,
再分析第二列的情况,当第一列确定时,第二列第一行只能有2种情况,
当第二列一行确定时,第二列第2,3行只能有1种情况;
所以排列方法共有:×2×1×1=12种,
故选:A.
【点评】本题若讨论三行每一行的情况,讨论情况较繁琐,而对两列的情况进行分析会大大简化解答过程.
12.(5分)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为()
A.16 B.14 C.12 D.10
【考点】IG:直线的一般式方程与直线的性质;IQ:与直线关于点、直线对称的直线方程
【专题】13:作图题;16:压轴题.
【分析】通过相似三角形,来确定反射后的点的落的位置,结合图象分析反射的次数即可.
【解答】解:根据已知中的点E,F的位置,可知第一次碰撞点为F,在反射的过程中,直线是平行的,利用平行关系及三角形的相似可得第二次碰撞点为G,且CG=,第二次碰撞点为H,且DH=,作图,