可以得到回到E点时,需要碰撞14次即可.
故选:B.
【点评】本题主要考查了反射原理与三角形相似知识的运用.通过相似三角形,来确定反射后的点的落的位置,结合图象分析反射的次数即可,属于难题.
二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.(注意:在试题卷上作答无效)
13.(5分)若x,y满足约束条件则z=3x﹣y的最小值为﹣1.
【考点】7C:简单线性规划
【专题】11:计算题.
【分析】作出不等式组表示的平面区域,由z=3x﹣y可得y=3x﹣z,则﹣z表示直线3x﹣y﹣z=0在y轴上的截距,截距越大z越小,结合图形可求
【解答】解:作出不等式组表示的平面区域,如图所示
由z=3x﹣y可得y=3x﹣z,则﹣z表示直线3x﹣y﹣z=0在y轴上的截距,截距越大z越小
结合图形可知,当直线z=3x﹣y过点C时z最小
由可得C(0,1),此时z=﹣1
故答案为:﹣1
【点评】本题主要考查了线性规划的简单应用,解题的关键是明确目标函数中z的几何意义,属于基础试题
14.(5分)当函数y=sinx﹣cosx(0≤x<2π)取得最大值时,x=.
【考点】GP:两角和与差的三角函数;HW:三角函数的最值
【专题】11:计算题;16:压轴题.
【分析】利用辅助角公式将y=sinx﹣cosx化为y=2sin(x﹣)(0≤x<2π),即可求得y=sinx﹣cosx(0≤x<2π)取得最大值时x的值.
【解答】解:∵y=sinx﹣cosx=2(sinx﹣cosx)=2sin(x﹣).
∵0≤x<2π,
∴﹣≤x﹣<,
∴ymax=2,此时x﹣=,
∴x=.
故答案为:.
【点评】本题考查三角函数的最值两与角和与差的正弦函数,着重考查辅助角公式的应用与正弦函数的性质,将y=sinx﹣cosx(0≤x<2π)化为y=2sin(x﹣)(0≤x<2π)是关键,属于中档题.
15.(5分)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为56.
【考点】DA:二项式定理
【专题】11:计算题;16:压轴题.
【分析】根据第2项与第7项的系数相等建立等式,求出n的值,根据通项可求满足条件的系数
【解答】解:由题意可得,
∴n=8
展开式的通项=
令8﹣2r=﹣2可得r=5
此时系数为=56
故答案为:56
【点评】本题主要考查了二项式系数的性质,以及系数的求解,解题的关键是根据二项式定理写出通项公式,同时考查了计算能力.
16.(5分)三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为.
【考点】LM:异面直线及其所成的角