订单查询
首页 其他文档
高考文科数学卷子全国卷
大小:0B 10页 发布时间: 2024-01-29 12:44:13 18.33k 18.32k

【解答】解:(Ⅰ)求导函数,可得f'(x)=a﹣sinx,x∈[0,π],sinx∈[0,1];

当a≤0时,f'(x)≤0恒成立,f(x)单调递减;当a≥1 时,f'(x)≥0恒成立,f(x)单调递增;

当0<a<1时,由f'(x)=0得x1=arcsina,x2=π﹣arcsina

当x∈[0,x1]时,sinx<a,f'(x)>0,f(x)单调递增

当x∈[x1,x2]时,sinx>a,f'(x)<0,f(x)单调递减

当x∈[x2,π]时,sinx<a,f'(x)>0,f(x)单调递增;

(Ⅱ)由f(x)≤1+sinx得f(π)≤1,aπ﹣1≤1,∴a≤

令g(x)=sinx﹣(0≤x),则g′(x)=cosx﹣

当x时,g′(x)>0,当时,g′(x)<0

,∴g(x)≥0,即(0≤x),

当a≤时,有

①当0≤x时,,cosx≤1,所以f(x)≤1+sinx;

②当时,=1+≤1+sinx

综上,a≤

【点评】本题考查导数知识的运用,考查函数的单调性,考查函数的最值,解题的关键是正确求导,确定函数的单调性.

21.(12分)已知抛物线C:y=(x+1)2与圆(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.

(Ⅰ)求r;

(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.

【考点】IM:两条直线的交点坐标;IT:点到直线的距离公式;KJ:圆与圆锥曲线的综合

【专题】15:综合题;16:压轴题.

【分析】(Ⅰ)设A(x0,(x0+1)2),根据y=(x+1)2,求出l的斜率,圆心M(1,),求得MA的斜率,利用l⊥MA建立方程,求得A的坐标,即可求得r的值;

(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1,若该直线与圆M相切,则圆心M到该切线的距离为,建立方程,求得t的值,求出相应的切线方程,可得D的坐标,从而可求D到l的距离.

【解答】解:(Ⅰ)设A(x0,(x0+1)2),

∵y=(x+1)2,y′=2(x+1)

∴l的斜率为k=2(x0+1)

当x0=1时,不合题意,所以x0≠1

圆心M(1,),MA的斜率

∵l⊥MA,∴2(x0+1)×=﹣1

∴x0=0,∴A(0,1),

∴r=|MA|=

(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1

若该直线与圆M相切,则圆心M到该切线的距离为

∴t2(t2﹣4t﹣6)=0

∴t0=0,或t1=2+,t2=2﹣

抛物线C在点(ti,(ti+1)2)(i=0,1,2)处的切线分别为l,m,n,其方程分别为

y=2x+1①,y=2(t1+1)x﹣②,y=2(t2+1)x﹣

②﹣③:x=

代入②可得:y=﹣1

∴D(2,﹣1),

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441