【解答】解:(Ⅰ)求导函数,可得f'(x)=a﹣sinx,x∈[0,π],sinx∈[0,1];
当a≤0时,f'(x)≤0恒成立,f(x)单调递减;当a≥1 时,f'(x)≥0恒成立,f(x)单调递增;
当0<a<1时,由f'(x)=0得x1=arcsina,x2=π﹣arcsina
当x∈[0,x1]时,sinx<a,f'(x)>0,f(x)单调递增
当x∈[x1,x2]时,sinx>a,f'(x)<0,f(x)单调递减
当x∈[x2,π]时,sinx<a,f'(x)>0,f(x)单调递增;
(Ⅱ)由f(x)≤1+sinx得f(π)≤1,aπ﹣1≤1,∴a≤.
令g(x)=sinx﹣(0≤x),则g′(x)=cosx﹣
当x时,g′(x)>0,当时,g′(x)<0
∵,∴g(x)≥0,即(0≤x),
当a≤时,有
①当0≤x时,,cosx≤1,所以f(x)≤1+sinx;
②当时,=1+≤1+sinx
综上,a≤.
【点评】本题考查导数知识的运用,考查函数的单调性,考查函数的最值,解题的关键是正确求导,确定函数的单调性.
21.(12分)已知抛物线C:y=(x+1)2与圆(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.
(Ⅰ)求r;
(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.
【考点】IM:两条直线的交点坐标;IT:点到直线的距离公式;KJ:圆与圆锥曲线的综合
【专题】15:综合题;16:压轴题.
【分析】(Ⅰ)设A(x0,(x0+1)2),根据y=(x+1)2,求出l的斜率,圆心M(1,),求得MA的斜率,利用l⊥MA建立方程,求得A的坐标,即可求得r的值;
(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1,若该直线与圆M相切,则圆心M到该切线的距离为,建立方程,求得t的值,求出相应的切线方程,可得D的坐标,从而可求D到l的距离.
【解答】解:(Ⅰ)设A(x0,(x0+1)2),
∵y=(x+1)2,y′=2(x+1)
∴l的斜率为k=2(x0+1)
当x0=1时,不合题意,所以x0≠1
圆心M(1,),MA的斜率.
∵l⊥MA,∴2(x0+1)×=﹣1
∴x0=0,∴A(0,1),
∴r=|MA|=;
(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1
若该直线与圆M相切,则圆心M到该切线的距离为
∴
∴t2(t2﹣4t﹣6)=0
∴t0=0,或t1=2+,t2=2﹣
抛物线C在点(ti,(ti+1)2)(i=0,1,2)处的切线分别为l,m,n,其方程分别为
y=2x+1①,y=2(t1+1)x﹣②,y=2(t2+1)x﹣③
②﹣③:x=
代入②可得:y=﹣1
∴D(2,﹣1),