订单查询
首页 其他文档
全国高考文科数学真题和答案
大小:0B 11页 发布时间: 2024-01-29 12:47:45 6.94k 6.45k

【解答】解:(I)

由于直线x+2y﹣3=0的斜率为﹣,且过点(1,1)

所以

解得a=1,b=1

(II)由(I)知f(x)=

所以

考虑函数

所以当x≠1时,h′(x)<0而h(1)=0,

当x∈(0,1)时,h(x)>0可得

从而当x>0且x≠1时,

【点评】本题考查导函数的几何意义:在切点处的导数值为切线的斜率、考查通过判断导函数的符号求出函数的单调性;通过求函数的最值证明不等式恒成立.

22.(10分)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.

(Ⅰ)证明:C,B,D,E四点共圆;

(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.

【考点】N7:圆周角定理;NC:与圆有关的比例线段

【专题】11:计算题;14:证明题.

【分析】(I)做出辅助线,根据所给的AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根,得到比例式,根据比例式得到三角形相似,根据相似三角形的对应角相等,得到结论.

(II)根据所给的条件做出方程的两个根,即得到两条线段的长度,取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH,根据四点共圆得到半径的大小.

【解答】解:(I)连接DE,根据题意在△ADE和△ACB中,

AD×AB=mn=AE×AC,

又∠DAE=∠CAB,从而△ADE∽△ACB

因此∠ADE=∠ACB

∴C,B,D,E四点共圆.

(Ⅱ)m=4,n=6时,方程x2﹣14x+mn=0的两根为x1=2,x2=12.

故AD=2,AB=12.

取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.

∵C,B,D,E四点共圆,

∴C,B,D,E四点所在圆的圆心为H,半径为DH.

由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=(12﹣2)=5.

故C,B,D,E四点所在圆的半径为5

【点评】本题考查圆周角定理,考查与圆有关的比例线段,考查一元二次方程的解,考查四点共圆的判断和性质,本题是一个几何证明的综合题.

23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2

(Ⅰ)求C2的方程;

(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441