(Ⅰ)证明:平面PAC⊥平面PBD;
(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.
19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:
性别是否需要志愿者男女
需要4030
不需要160270
(1)估计该地区老年人中,需要志愿者提供帮助的比例;
(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.
P(K2≥k)0.0500.0100.001
3.8416.63510.828
附:K2=.
20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.
(Ⅰ)求|AB|;
(Ⅱ)若直线l的斜率为1,求b的值.
21.设函数f(x)=x(ex﹣1)﹣ax2
(Ⅰ)若a=,求f(x)的单调区间;
(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.
22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:
(Ⅰ)∠ACE=∠BCD.
(Ⅱ)BC2=BE•CD.
23.(10分)已知直线C1(t为参数),C2(θ为参数),
(Ⅰ)当α=时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.
24.(10分)设函数f(x)=|2x﹣4|+1.
(Ⅰ)画出函数y=f(x)的图象:
(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.
参考答案与试题解析
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()
A.(0,2) B.[0,2] C.{0,2} D.{0,1,2}
【考点】1E:交集及其运算
【专题】11:计算题.
【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求
【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}
B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}
则A∩B={0,1,2}
故选:D.