【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.(10分)设等差数列{an}满足a3=5,a10=﹣9.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求{an}的前n项和Sn及使得Sn最大的序号n的值.
【考点】84:等差数列的通项公式;85:等差数列的前n项和
【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.
(2)由上面得到的首项和公差,写出数列{an}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.
【解答】解:(1)由an=a1+(n﹣1)d及a3=5,a10=﹣9得
a1+9d=﹣9,a1+2d=5
解得d=﹣2,a1=9,
数列{an}的通项公式为an=11﹣2n
(2)由(1)知Sn=na1+d=10n﹣n2.
因为Sn=﹣(n﹣5)2+25.
所以n=5时,Sn取得最大值.
【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.
18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.
(Ⅰ)证明:平面PAC⊥平面PBD;
(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.
【考点】LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直
【专题】11:计算题;14:证明题;35:转化思想.
【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.
(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.
【解答】解:
(1)因为PH是四棱锥P﹣ABCD的高.
所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.
所以AC⊥平面PBD.
故平面PAC⊥平面PBD(6分)
(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.
所以HA=HB=.
因为∠APB=∠ADB=60°
所以PA=PB=,HD=HC=1.
可得PH=.
等腰梯形ABCD的面积为S=ACxBD=2+(9分)
所以四棱锥的体积为V=×(2+)×=.(12分)
【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.
19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:
性别是否需要志愿者男女
需要4030