【分析】(I)做出辅助线,根据所给的AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根,得到比例式,根据比例式得到三角形相似,根据相似三角形的对应角相等,得到结论.
(II)根据所给的条件做出方程的两个根,即得到两条线段的长度,取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH,根据四点共圆得到半径的大小.
【解答】解:(I)连接DE,根据题意在△ADE和△ACB中,
AD×AB=mn=AE×AC,
即
又∠DAE=∠CAB,从而△ADE∽△ACB
因此∠ADE=∠ACB
∴C,B,D,E四点共圆.
(Ⅱ)m=4,n=6时,方程x2﹣14x+mn=0的两根为x1=2,x2=12.
故AD=2,AB=12.
取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.
∵C,B,D,E四点共圆,
∴C,B,D,E四点所在圆的圆心为H,半径为DH.
由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=(12﹣2)=5.
故C,B,D,E四点所在圆的半径为5
【点评】本题考查圆周角定理,考查与圆有关的比例线段,考查一元二次方程的解,考查四点共圆的判断和性质,本题是一个几何证明的综合题.
23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2
(Ⅰ)求C2的方程;
(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.
【考点】J3:轨迹方程;Q4:简单曲线的极坐标方程
【专题】11:计算题;16:压轴题.
【分析】(I)先设出点P的坐标,然后根据点P满足的条件代入曲线C1的方程即可求出曲线C2的方程;
(II)根据(I)将求出曲线C1的极坐标方程,分别求出射线θ=与C1的交点A的极径为ρ1,以及射线θ=与C2的交点B的极径为ρ2,最后根据|AB|=|ρ2﹣ρ1|求出所求.
【解答】解:(I)设P(x,y),则由条件知M(,).由于M点在C1上,
所以即
从而C2的参数方程为
(α为参数)
(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.
射线θ=与C1的交点A的极径为ρ1=4sin,
射线θ=与C2的交点B的极径为ρ2=8sin.
所以|AB|=|ρ2﹣ρ1|=.
【点评】本题考查点的极坐标和直角坐标的互化,以及轨迹方程的求解和线段的度量,属于中档题.
24.设函数f(x)=|x﹣a|+3x,其中a>0.
(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集
(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.
【考点】R5:绝对值不等式的解法
【专题】11:计算题;16:压轴题;32:分类讨论.
【分析】(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.直接求出不等式f(x)≥3x+2的解集即可.
(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0分x≥a和x≤a推出等价不等式组,分别求解,然后求出a的值.