【点评】本题考查线性规划问题,考查根据不等式组画出可行域,在可行域中,找出满足条件的点,把点的坐标代入,求出最值.
14.(5分)在平面直角坐标系xOy,椭圆C的中心为原点,焦点F1F2在x轴上,离心率为.过Fl的直线交于A,B两点,且△ABF2的周长为16,那么C的方程为+=1.
【考点】K4:椭圆的性质
【专题】11:计算题;16:压轴题.
【分析】根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16,结合椭圆的定义,有4a=16,即可得a的值;又由椭圆的离心率,可得c的值,进而可得b的值;由椭圆的焦点在x轴上,可得椭圆的方程.
【解答】解:根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16;
根据椭圆的性质,有4a=16,即a=4;
椭圆的离心率为,即=,则a=c,
将a=c,代入可得,c=2,则b2=a2﹣c2=8;
则椭圆的方程为+=1;
故答案为:+=1.
【点评】本题考查椭圆的性质,此类题型一般与焦点三角形联系,难度一般不大;注意结合椭圆的基本几何性质解题即可.
15.(5分)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的体积为8.
【考点】LF:棱柱、棱锥、棱台的体积
【专题】11:计算题;16:压轴题.
【分析】由题意求出矩形的对角线的长,结合球的半径,球心到矩形的距离,满足勾股定理,求出棱锥的高,即可求出棱锥的体积.
【解答】解:矩形的对角线的长为:,所以球心到矩形的距离为:=2,
所以棱锥O﹣ABCD的体积为:=8.
故答案为:8
【点评】本题是基础题,考查球内几何体的体积的计算,考查计算能力,空间想象能力,常考题型.
16.(5分)在△ABC中,B=60°,AC=,则AB+2BC的最大值为2.
【考点】HR:余弦定理
【专题】11:计算题;16:压轴题.
【分析】设AB=c AC=b BC=a利用余弦定理和已知条件求得a和c的关系,设c+2a=m代入,利用判别大于等于0求得m的范围,则m的最大值可得.
【解答】解:设AB=c AC=b BC=a
由余弦定理
cosB=
所以a2+c2﹣ac=b2=3
设c+2a=m
代入上式得
7a2﹣5am+m2﹣3=0
△=84﹣3m2≥0 故m≤2
当m=2时,此时a=,c=符合题意
因此最大值为2
另解:因为B=60°,A+B+C=180°,所以A+C=120°,
由正弦定理,有
====2,
所以AB=2sinC,BC=2sinA.
所以AB+2BC=2sinC+4sinA=2sin(120°﹣A)+4sinA
=2(sin120°cosA﹣cos120°sinA)+4sinA