4.(5分)设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,Sk+2﹣Sk=24,则k=()
A.8 B.7 C.6 D.5
【考点】85:等差数列的前n项和
【专题】11:计算题.
【分析】先由等差数列前n项和公式求得Sk+2,Sk,将Sk+2﹣Sk=24转化为关于k的方程求解.
【解答】解:根据题意:
Sk+2=(k+2)2,Sk=k2
∴Sk+2﹣Sk=24转化为:
(k+2)2﹣k2=24
∴k=5
故选:D.
【点评】本题主要考查等差数列的前n项和公式及其应用,同时还考查了方程思想,属中档题.
5.(5分)设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω的最小值等于()
A. B.3 C.6 D.9
【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式
【专题】56:三角函数的求值.
【分析】函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,容易得到结果.
【解答】解:f(x)的周期T=,函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,所以,k∈Z.令k=1,可得ω=6.
故选:C.
【点评】本题是基础题,考查三角函数的图象的平移,三角函数的周期定义的理解,考查技术能力,常考题型.
6.(5分)已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离等于()
A. B. C. D.1
【考点】MK:点、线、面间的距离计算
【专题】11:计算题;13:作图题;35:转化思想.
【分析】画出图形,由题意通过等体积法,求出三棱锥的体积,然后求出D到平面ABC的距离.
【解答】解:由题意画出图形如图:
直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,
若AB=2,AC=BD=1,则D到平面ABC的距离转化为三棱锥D﹣ABC的高为h,
所以AD=,CD=,BC=
由VB﹣ACD=VD﹣ABC可知
所以,h=
故选C.
【点评】本题是基础题,考查点到平面的距离,考查转化思想的应用,等体积法是求解点到平面距离的基本方法之一,考查计算能力.
7.(5分)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()
A.4种 B.10种 C.18种 D.20种
【考点】D3:计数原理的应用
【专题】11:计算题.
【分析】本题是一个分类计数问题,一是3本集邮册一本画册,让一个人拿一本画册有4种,另一种情况是2本画册2本集邮册,只要选两个人拿画册C42种,根据分类计数原理得到结果.
【解答】解:由题意知本题是一个分类计数问题,
一是3本集邮册一本画册,从4位朋友选一个有4种,