①由题意可得,所有两人各选修2门的种数C42C42=36,
②两人所选两门都相同的有为C42=6种,都不同的种数为C42=6,
故选:C.
【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用直接法或间接法.
11.(5分)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()
A. B. C. D.
【考点】I3:直线的斜率;KA:双曲线的定义
【专题】11:计算题;16:压轴题.
【分析】设双曲线的有准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB的斜率可知直线AB的倾斜角,进而推,由双曲线的第二定义|AM|﹣|BN|=|AD|,进而根据,求得离心率.
【解答】解:设双曲线的右准线为l,
过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,
由直线AB的斜率为,
知直线AB的倾斜角为60°
∴∠BAD=60°
,
由双曲线的第二定义有:
=
∴,∴
故选:A.
【点评】本题主要考查了双曲线的定义.解题的关键是利用了双曲线的第二定义,找到了已知条件与离心率之间的联系.
12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()
A.南 B.北 C.西 D.下
【考点】LC:空间几何体的直观图
【专题】16:压轴题.
【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.
【解答】解:如图所示.
故选B
【点评】本题主要考查多面体的展开图的复原,属于基本知识基本能力的考查.
二、填空题(共4小题,每小题5分,满分20分)
13.(5分)(x﹣y)4的展开式中x3y3的系数为6.
【考点】DA:二项式定理
【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1项,令x,y的指数都为1求出x3y3的系数
【解答】解:,
只需求展开式中的含xy项的系数.
∵的展开式的通项为
令得r=2
∴展开式中x3y3的系数为C42=6