并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,
由余弦定理,得cosθ==.
故选:D.
【点评】本题主要考查异面直线的夹角与余弦定理.
8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()
A. B. C. D.
【考点】HB:余弦函数的对称性
【专题】11:计算题.
【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.
【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.
∴∴由此易得.
故选:A.
【点评】本题主要考查余弦函数的对称性.属基础题.
9.(5分)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()
A.1 B.2 C.﹣1 D.﹣2
【考点】6H:利用导数研究曲线上某点切线方程
【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.
【解答】解:设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a),
又∵
∴x0+a=1
∴y0=0,x0=﹣1
∴a=2.
故选:B.
【点评】本题考查导数的几何意义,常利用它求曲线的切线
10.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()
A.1 B.2 C. D.4
【考点】LQ:平面与平面之间的位置关系
【专题】11:计算题;16:压轴题.
【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可.
【解答】解:如图
分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,
连CQ,BD则∠ACQ=∠PDB=60°,,
又∵
当且仅当AP=0,即点A与点P重合时取最小值.
故选:C.
【点评】本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.
11.(5分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()
A.f(x)是偶函数 B.f(x)是奇函数