∴=0,
∴﹣(2λ+3)﹣3=0,解得λ=﹣3.
故选:B.
【点评】熟练掌握向量的运算法则、向量垂直与数量积的关系是解题的关键.
4.(5分)已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()
A.(﹣1,1) B. C.(﹣1,0) D.
【考点】33:函数的定义域及其求法
【专题】51:函数的性质及应用.
【分析】原函数的定义域,即为2x+1的范围,解不等式组即可得解.
【解答】解:∵原函数的定义域为(﹣1,0),
∴﹣1<2x+1<0,解得﹣1<x<﹣.
∴则函数f(2x+1)的定义域为.
故选:B.
【点评】考查复合函数的定义域的求法,注意变量范围的转化,属简单题.
5.(5分)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()
A. B. C.2x﹣1(x∈R) D.2x﹣1(x>0)
【考点】4R:反函数
【专题】51:函数的性质及应用.
【分析】把y看作常数,求出x:x=,x,y互换,得到y=log2(1+)的反函数.注意反函数的定义域.
【解答】解:设y=log2(1+),
把y看作常数,求出x:
1+=2y,x=,其中y>0,
x,y互换,得到y=log2(1+)的反函数:y=,
故选:A.
【点评】本题考查对数函数的反函数的求法,解题时要认真审题,注意对数式和指数式的相互转化.
6.(5分)已知数列{an}满足3an+1+an=0,a2=﹣,则{an}的前10项和等于()
A.﹣6(1﹣3﹣10) B. C.3(1﹣3﹣10) D.3(1+3﹣10)
【考点】89:等比数列的前n项和
【专题】11:计算题;54:等差数列与等比数列.
【分析】由已知可知,数列{an}是以﹣为公比的等比数列,结合已知可求a1,然后代入等比数列的求和公式可求
【解答】解:∵3an+1+an=0
∴
∴数列{an}是以﹣为公比的等比数列
∵
∴a1=4
由等比数列的求和公式可得,S10==3(1﹣3﹣10)
故选:C.
【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题
7.(5分)(1+x)3(1+y)4的展开式中x2y2的系数是()
A.5 B.8 C.12 D.18