【分析】(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,画出函数y的图象,数形结合可得结论.
(Ⅱ)不等式化即 1+a≤x+3,故x≥a﹣2对x∈[﹣,]都成立,分析可得﹣≥a﹣2,由此解得a的取值范围.
【解答】解:(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.
设y=|2x﹣1|+|2x﹣2|﹣x﹣3,则 y=,它的图象如图所示:
结合图象可得,y<0的解集为(0,2),故原不等式的解集为(0,2).
(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)=1+a,不等式化为 1+a≤x+3,
故 x≥a﹣2对x∈[﹣,]都成立.
故﹣≥a﹣2,
解得 a≤,
故a的取值范围为(﹣1,].
【点评】本题考查绝对值不等式的解法与绝对值不等式的性质,关键是利用零点分段讨论法分析函数的解析式.