订单查询
首页 其他文档
高考理科数学全国卷1和答案
大小:0B 12页 发布时间: 2024-01-29 13:45:04 11.34k 9.49k

三、解答题:解答应写出文字说明,证明过程或演算步骤.

17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.

(1)若PB=,求PA;

(2)若∠APB=150°,求tan∠PBA.

18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.

(Ⅰ)证明AB⊥A1C;

(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.

19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.

(Ⅰ)求这批产品通过检验的概率;

(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.

20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.

(Ⅰ)求C的方程;

(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.

21.(12分)已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.

(Ⅰ)求a,b,c,d的值;

(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.

四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.

22.(10分)(选修4﹣1:几何证明选讲)

如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.

(Ⅰ)证明:DB=DC;

(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.

23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.

(1)把C1的参数方程化为极坐标方程;

(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.

(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;

(Ⅱ)设a>﹣1,且当x∈[﹣]时,f(x)≤g(x),求a的取值范围.

参考答案与试题解析

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.

1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()

A.A∩B=∅ B.A∪B=R C.B⊆A D.A⊆B

【考点】1D:并集及其运算;73:一元二次不等式及其应用

【专题】59:不等式的解法及应用;5J:集合.

【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.

【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},

∴A∩B={x|2<x<或﹣<x<0},A∪B=R,

故选:B.

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441