当sin(θ+α)=1时,|PA|取得最小值,最小值为.
【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.
选修4-5:不等式选讲
24.若a>0,b>0,且+=.
(Ⅰ)求a3+b3的最小值;
(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.
【考点】RI:平均值不等式
【专题】59:不等式的解法及应用.
【分析】(Ⅰ)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值.
(Ⅱ)根据 ab≥2及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.
【解答】解:(Ⅰ)∵a>0,b>0,且+=,
∴=+≥2,∴ab≥2,
当且仅当a=b=时取等号.
∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,
∴a3+b3的最小值为4.
(Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号.
而由(1)可知,2≥2=4>6,
故不存在a,b,使得2a+3b=6成立.
【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.