订单查询
首页 其他文档
高考理科数学试题(天津卷)及参考答案
大小:0B 10页 发布时间: 2024-01-30 19:29:10 15.61k 15.57k

所以

故填:

【点评】本题主要考查四点共圆的性质与相似三角形的性质,属于中等题.温馨提示:四点共圆时四边形对角互补,圆与三角形综合问题是高考中平面几何选讲的重要内容,也是考查的热点.

15.(4分)(2010•天津)如图,在△ABC中,AD⊥AB,,则=

【考点】向量在几何中的应用.菁优网版权所有

【专题】平面向量及应用.

【分析】本题主要考查平面向量的基本运算与解三角形的基础知识,属于难题.

【解答】解:

∴cos∠DAC=sin∠BAC,

在△ABC中,由正弦定理得变形得|AC|sin∠BAC=|BC|sinB,

=|BC|sinB==

故答案为

【点评】近几年天津卷中总可以看到平面向量的身影,且均属于中等题或难题,应加强平面向量的基本运算的训练,尤其是与三角形综合的问题

16.(4分)(2010•天津)设函数f(x)=x2﹣1,对任意x∈[,+∞),f()﹣4m2f(x)≤f(x﹣1)+4f(m)恒成立,则实数m的取值范围是

【考点】函数恒成立问题.菁优网版权所有

【专题】函数的性质及应用.

【分析】依据题意得上恒定成立,即上恒成立,求出函数函数的最小值即可求出m的取值.

【解答】解:依据题意得上恒定成立,

上恒成立.

令g(x)=,g′(x)=

∴g′(x)>0

∴当时,函数取得最小值

所以

即(3m2+1)(4m2﹣3)≥0,

解得

故答案为:(﹣∞,﹣]∪[,+∞).

【点评】本题是较为典型的恒成立问题,难度较大,解决恒成立问题通常可以利用分离变量转化为最值的方法求解.

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441