只需(x)≥﹣e,即可.
【解答】解:(1)=﹣.
∴f′(0)=2,即曲线y=f(x)在点(0,﹣1)处的切线斜率k=2,
∴曲线y=f(x)在点(0,﹣1)处的切线方程方程为y﹣(﹣1)=2x.
即2x﹣y﹣1=0为所求.
(2)证明:函数f(x)的定义域为:R,
可得=﹣.
令f′(x)=0,可得,
当x时,f′(x)<0,x时,f′(x)>0,x∈(2,+∞)时,f′(x)<0.
∴f(x)在(﹣),(2,+∞)递减,在(﹣,2)递增,
注意到a≥1时,函数g(x)=ax2+x﹣1在(2,+∞)单调递增,且g(2)=4a+1>0
函数f(x)的图象如下:
∵a≥1,∴,则≥﹣e,
∴f(x)≥﹣e,
∴当a≥1时,f(x)+e≥0.
【点评】本题考查了导数的几何意义,及利用导数求单调性、最值,考查了数形结合思想,属于中档题.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分)
22.(10分)在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.
(1)求α的取值范围;
(2)求AB中点P的轨迹的参数方程.
【考点】QK:圆的参数方程.菁优网版权所有
【专题】11:计算题;35:转化思想;49:综合法;5S:坐标系和参数方程.
【分析】(1)⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α=时,直线l的方程为x=0,成立;当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=tanα•x+,从而圆心O(0,0)到直线l的距离d=<1,进而求出或,由此能求出α的取值范围.
(2)设直线l的方程为x=m(y+),联立,得(m2+1)y2+2+2m2﹣1=0,由此利用韦达定理、中点坐标公式能求出AB中点P的轨迹的参数方程.
【解答】解:(1)∵⊙O的参数方程为(θ为参数),
∴⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,
当α=时,过点(0,﹣)且倾斜角为α的直线l的方程为x=0,成立;
当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=tanα•x﹣,
∵倾斜角为α的直线l与⊙O交于A,B两点,
∴圆心O(0,0)到直线l的距离d=<1,
∴tan2α>1,∴tanα>1或tanα<﹣1,
∴或,
综上α的取值范围是(,).
(2)由(1)知直线l的斜率不为0,设直线l的方程为x=m(y+),
设A(x1,y1),(B(x2,y2),P(x3,y3),
联立,得(m2+1)y2+2+2m2﹣1=0,
,
=﹣+2,
=,=﹣,