所以MC∥平面PBD.
【点评】本题考查直线与平面垂直的判断定理以及性质定理的应用,直线与平面培训的判断定理的应用,考查空间想象能力以及逻辑推理能力.
20.(12分)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).
(1)证明:k<﹣;
(2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.
【考点】K4:椭圆的性质;KL:直线与椭圆的综合.菁优网版权所有
【专题】35:转化思想;4P:设而不求法;5E:圆锥曲线中的最值与范围问题.
【分析】(1)设A(x1,y1),B(x2,y2),利用点差法得
6(x1﹣x2)+8m(y1﹣y2)=0,k==﹣=﹣
又点M(1,m)在椭圆内,即,解得m的取值范围,即可得k<﹣,
(2)设A(x1,y1),B(x2,y2),P(x3,y3),可得x1+x2=2
由++=,可得x3﹣1=0,由椭圆的焦半径公式得则|FA|=a﹣ex1=2﹣x1,|FB|=2﹣x2,|FP|=2﹣x3=.即可证明|FA|+|FB|=2|FP|.
【解答】解:(1)设A(x1,y1),B(x2,y2),
∵线段AB的中点为M(1,m),
∴x1+x2=2,y1+y2=2m
将A,B代入椭圆C:+=1中,可得
,
两式相减可得,3(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,
即6(x1﹣x2)+8m(y1﹣y2)=0,
∴k==﹣=﹣
点M(1,m)在椭圆内,即,
解得0<m
∴k=﹣.
(2)证明:设A(x1,y1),B(x2,y2),P(x3,y3),
可得x1+x2=2
∵++=,F(1,0),∴x1﹣1+x2﹣1+x3﹣1=0,
∴x3=1
由椭圆的焦半径公式得则|FA|=a﹣ex1=2﹣x1,|FB|=2﹣x2,|FP|=2﹣x3=.
则|FA|+|FB|=4﹣,
∴|FA|+|FB|=2|FP|,
【点评】本题考查直线与椭圆的位置关系的综合应用,考查了点差法、焦半径公式,考查分析问题解决问题的能力,转化思想的应用与计算能力的考查.属于中档题.
21.(12分)已知函数f(x)=.
(1)求曲线y=f(x)在点(0,﹣1)处的切线方程;
(2)证明:当a≥1时,f(x)+e≥0.
【考点】6D:利用导数研究函数的极值;6H:利用导数研究曲线上某点切线方程.菁优网版权所有
【专题】35:转化思想;49:综合法;53:导数的综合应用.
【分析】(1)
由f′(0)=2,可得切线斜率k=2,即可得到切线方程.
(2)可得=﹣.可得f(x)在(﹣),(2,+∞)递减,在(﹣,2)递增,注意到a≥1时,函数g(x)=ax2+x﹣1在(2,+∞)单调递增,且g(2)=4a+1>0