大家好,今天小编为大家整理了一些有关于全国统一高考数学试卷(理科)的内容,希望可以对大家有帮助,欢迎各位阅读和下载。
全国统一高考数学试卷(理科)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()
A.{0} B.{1} C.{1,2} D.{0,1,2}
2.(5分)(1+i)(2﹣i)=()
A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i
3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()
A. B.
C. D.
4.(5分)若sinα=,则cos2α=()
A. B. C.﹣ D.﹣
5.(5分)(x2+)5的展开式中x4的系数为()
A.10 B.20 C.40 D.80
6.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()
A.[2,6] B.[4,8] C.[,3] D.[2,3]
7.(5分)函数y=﹣x4+x2+2的图象大致为()
A. B.
C. D.
8.(5分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=()
A.0.7 B.0.6 C.0.4 D.0.3
9.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()
A. B. C. D.
10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()
A.12 B.18 C.24 D.54
11.(5分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()
A. B.2 C. D.
12.(5分)设a=log0.20.3,b=log20.3,则()
A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)已知向量=(1,2),=(2,﹣2),=(1,λ).若∥(2+),则λ= .
14.(5分)曲线y=(ax+1)ex在点(0,1)处的切线的斜率为﹣2,则a= .
15.(5分)函数f(x)=cos(3x+)在[0,π]的零点个数为 .
16.(5分)已知点M(﹣1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=
.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。
17.(12分)等比数列{an}中,a1=1,a5=4a3.
(1)求{an}的通项公式;
(2)记Sn为{an}的前n项和.若Sm=63,求m.