订单查询
首页 其他文档
全国统一高考数学试卷(理科)
大小:0B 13页 发布时间: 2024-01-31 08:06:27 9.11k 8.56k

因为DX=2.4,可得10p(1﹣p)=2.4,解得p=0.6或p=0.4(舍去).

故选:B.

【点评】本题考查离散型离散型随机变量的期望与方差的求法,独立重复事件的应用,考查转化思想以及计算能力.

9.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()

A. B. C. D.

【考点】HR:余弦定理.菁优网版权所有

【专题】11:计算题;35:转化思想;49:综合法;58:解三角形.

【分析】推导出S△ABC==,从而sinC==cosC,由此能求出结果.

【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.

△ABC的面积为

∴S△ABC==

∴sinC==cosC,

∵0<C<π,∴C=

故选:C.

【点评】本题考查三角形内角的求法,考查余弦定理、三角形面积公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.

10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()

A.12 B.18 C.24 D.54

【考点】LF:棱柱、棱锥、棱台的体积;LG:球的体积和表面积.菁优网版权所有

【专题】11:计算题;31:数形结合;34:方程思想;35:转化思想;49:综合法;5F:空间位置关系与距离.

【分析】求出,△ABC为等边三角形的边长,画出图形,判断D的位置,然后求解即可.

【解答】解:△ABC为等边三角形且面积为9,可得,解得AB=6,

球心为O,三角形ABC 的外心为O′,显然D在O′O的延长线与球的交点如图:

O′C==,OO′==2,

则三棱锥D﹣ABC高的最大值为:6,

则三棱锥D﹣ABC体积的最大值为:=18

故选:B.

【点评】本题考查球的内接多面体,棱锥的体积的求法,考查空间想象能力以及计算能力.

11.(5分)设F1,F2是双曲线C:=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()

A. B.2 C. D.

【考点】KC:双曲线的性质.菁优网版权所有

【专题】11:计算题;38:对应思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.

【分析】先根据点到直线的距离求出|PF2|=b,再求出|OP|=a,在三角形F1PF2中,由余弦定理可得|PF1|2=|PF2|2+|F1F2|2﹣2|PF2|•|F1F2|cos∠PF2O,代值化简整理可得a=c,问题得以解决.

【解答】解:双曲线C:=1(a>0.b>0)的一条渐近线方程为y=x,

∴点F2到渐近线的距离d==b,即|PF2|=b,

∴|OP|===a,cos∠PF2O=

∵|PF1|=|OP|,

∴|PF1|=a,

在三角形F1PF2中,由余弦定理可得|PF1|2=|PF2|2+|F1F2|2﹣2|PF2|•|F1F2|COS∠PF2O,

∴6a2=b2+4c2﹣2×b×2c×=4c2﹣3b2=4c2﹣3(c2﹣a2),

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441