订单查询
首页 其他文档
全国统一高考数学试卷(理科)
大小:0B 13页 发布时间: 2024-01-31 08:06:27 9.11k 8.56k

第一种生产方式15520

第二种生产方式51520

总计202040

(3)根据(2)中的列联表,计算

K2===10>6.635,

∴能有99%的把握认为两种生产方式的效率有差异.

【点评】本题考查了列联表与独立性检验的应用问题,是基础题.

19.(12分)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点.

(1)证明:平面AMD⊥平面BMC;

(2)当三棱锥M﹣ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.

【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.菁优网版权所有

【专题】35:转化思想;4R:转化法;5F:空间位置关系与距离;5H:空间向量及应用.

【分析】(1)根据面面垂直的判定定理证明MC⊥平面ADM即可.

(2)根据三棱锥的体积最大,确定M的位置,建立空间直角坐标系,求出点的坐标,利用向量法进行求解即可.

【解答】解:(1)证明:在半圆中,DM⊥MC,

∵正方形ABCD所在的平面与半圆弧所在平面垂直,

∴AD⊥平面DCM,则AD⊥MC,

∵AD∩DM=D,

∴MC⊥平面ADM,

∵MC⊂平面MBC,

∴平面AMD⊥平面BMC.

(2)∵△ABC的面积为定值,

∴要使三棱锥M﹣ABC体积最大,则三棱锥的高最大,

此时M为圆弧的中点,

建立以O为坐标原点,如图所示的空间直角坐标系如图

∵正方形ABCD的边长为2,

∴A(2,﹣1,0),B(2,1,0),M(0,0,1),

则平面MCD的法向量=(1,0,0),

设平面MAB的法向量为=(x,y,z)

=(0,2,0),=(﹣2,1,1),

=2y=0,=﹣2x+y+z=0,

令x=1,

则y=0,z=2,即=(1,0,2),

则cos<>===

则面MAB与面MCD所成二面角的正弦值sinα==

【点评】本题主要考查空间平面垂直的判定以及二面角的求解,利用相应的判定定理以及建立坐标系,利用向量法是解决本题的关键.

20.(12分)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).

(1)证明:k<﹣

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441