15.(5分)已知α∈(0,),tanα=2,则cos(α﹣)= .
16.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为 .
三、解答题:共70分。解答应写出文字说明、证明过程或演算过程.第17~21题为必选题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。
17.(12分)记Sn为等比数列{an}的前n项和.已知S2=2,S3=﹣6.
(1)求{an}的通项公式;
(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列.
18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.
19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:
抽取次序12345678
零件尺寸9.9510.129.969.9610.019.929.9810.04
抽取次序910111213141516
零件尺寸10.269.9110.1310.029.2210.0410.059.95
经计算得 =xi=9.97,s==≈0.212,≈18.439,(xi﹣)(i﹣8.5)=﹣2.78,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
(1)求(xi,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在(﹣3s,+3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在(﹣3s,+3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
附:样本(xi,yi)(i=1,2,…,n)的相关系数r=,≈0.09.
20.(12分)设A,B为曲线C:y=上两点,A与B的横坐标之和为4.
(1)求直线AB的斜率;
(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.
21.(12分)已知函数f(x)=ex(ex﹣a)﹣a2x.
(1)讨论f(x)的单调性;
(2)若f(x)≥0,求a的取值范围.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程选讲](10分)
22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为 ,(t为参数).
(1)若a=﹣1,求C与l的交点坐标;
(2)若C上的点到l距离的最大值为,求a.
[选修4-5:不等式选讲](10分)
23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.
参考答案与试题解析
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则()
A.A∩B={x|x<} B.A∩B=∅ C.A∪B={x|x<} D.A∪B=R
【考点】1E:交集及其运算.菁优网版权所有