订单查询
首页 其他文档
全国统一高考数学试卷(文科)
大小:0B 12页 发布时间: 2024-01-31 08:16:27 18.47k 18.06k

当椭圆的焦点在y轴上时,m>3,

当M位于短轴的端点时,∠AMB取最大值,要使椭圆C上存在点M满足∠AMB=120°,

∠AMB≥120°,∠AMO≥60°,tan∠AMO=≥tan60°=,解得:m≥9,

∴m的取值范围是(0,1]∪[9,+∞)

故选A.

故选:A.

【点评】本题考查椭圆的标准方程,特殊角的三角函数值,考查分类讨论思想及数形结合思想的应用,考查计算能力,属于中档题.

二、填空题:本题共4小题,每小题5分,共20分。

13.(5分)已知向量=(﹣1,2),=(m,1),若向量+垂直,则m=7.

【考点】9T:数量积判断两个平面向量的垂直关系.菁优网版权所有

【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用.

【分析】利用平面向量坐标运算法则先求出,再由向量+垂直,利用向量垂直的条件能求出m的值.

【解答】解:∵向量=(﹣1,2),=(m,1),

=(﹣1+m,3),

∵向量+垂直,

∴()•=(﹣1+m)×(﹣1)+3×2=0,

解得m=7.

故答案为:7.

【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意平面向量坐标运算法则和向量垂直的性质的合理运用.

14.(5分)曲线y=x2+在点(1,2)处的切线方程为x﹣y+1=0.

【考点】6H:利用导数研究曲线上某点切线方程.菁优网版权所有

【专题】11:计算题;35:转化思想;49:综合法;53:导数的综合应用.

【分析】求出函数的导数,求出切线的斜率,利用点斜式求解切线方程即可.

【解答】解:曲线y=x2+,可得y′=2x﹣

切线的斜率为:k=2﹣1=1.

切线方程为:y﹣2=x﹣1,即:x﹣y+1=0.

故答案为:x﹣y+1=0.

【点评】本题考查切线方程的求法,考查转化思想以及计算能力.

15.(5分)已知α∈(0,),tanα=2,则cos(α﹣)=

【考点】GG:同角三角函数间的基本关系;GP:两角和与差的三角函数.菁优网版权所有

【专题】11:计算题;33:函数思想;4R:转化法;56:三角函数的求值.

【分析】根据同角的三角函数的关系求出sinα=,cosα=,再根据两角差的余弦公式即可求出.

【解答】解:∵α∈(0,),tanα=2,

∴sinα=2cosα,

∵sin2α+cos2α=1,

解得sinα=,cosα=

∴cos(α﹣)=cosαcos+sinαsin=×+×=

故答案为:

【点评】本题考查了同角的三角函数的关系以及余弦公式,考查了学生的运算能力,属于基础题.

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441